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Kapitel 1
Einleitung

1.1 Zusammenfassung

Bei der Konstruktion von Zufallsgeneratoren, die auf physikalischen Prozessen basieren, ist es zumeist nicht
moglich, gleichverteilte und unabhéngige Ausgabebits zu erhalten. Daher ist es notig, die erzeugten Daten
nachzubearbeiten, um guten Zufall zu erhalten (wobei der Begriff Zufall im Sinne von Gleichverteilung ver-
wendet wird). In dieser Arbeit stellen wir ein Verfahren zur Nachbearbeitung vor, die adaptive Extraktion.
Dessen zentrale Eigenschaften sind, daft das Verhalten der Zufallsquelle nicht exakt bekannt sein muf}, und
daf die Menge an erzeugtem guten Zufall sich automatisch der Qualitdt der Eingabe anpafst.

Weiterhin stellen wir ein an HMM (hidden Markov models) orientiertes Verfahren zur Modellierung von
Quellen vor, welches besonders gut mit dem adaptiven Extraktionsverfahren zusammenarbeitet.

Zuletzt behandeln wir noch praktische Aspekte der erarbeiteten Theorie: Wir stellen einen statistischen
Test vor, um die iiber eine Quelle getroffenen Annahmen zu iiberpriifen, und wir untersuchen eine spezielle
physikalische Quelle in Hinblick auf die Nachbearbeitbarkeit mittels unseres Verfahrens.

1.2 Abstract

When constructing random number generators based on physical processes, it is usually not possible to get
uniformly and independently distributed output bits. We therefore present a method for postprocessing the
output of the random source and generating good randomness, we call that method the adaptive extraction.
Its two main features are: First, we do not need to know the source’s behaviour in every detail (i.e. it suffices to
put some constraints on the distribution of the output). Secondly, the amount of generated good randomness
(i-e. nearly uniformly distributed data) is automatically adapted to the quality of the input.

We then present a technique for modelling sources, similar to hidden Markov models, which is especially
suited for use with the adaptive extraction.

Finally we investigate some practical aspects of our theory: We present a statistical test to verify assump-
tions made on the source, and we examine a given physical source with respect to the feasibility of adaptive
extraction.

1.3 Uberblick

In Kapitel 1 fiihren wir in das Thema dieser Arbeit ein und stellen die darin erarbeiteten Verfahren vor.

In Kapitel 2 behandeln wir Aspekte der Notation und grundlegende Begriffe wie Entropie und Zufélligkeit. Ein
besonders wichtiger Begriff ist hier unter anderem der der min-Entropie, es handelt sich dabei gewissermafien
um den garantierten Informationsgehalt der von einer Quelle ausgegebenen Nachrichten (siehe Definition 2.4).

In Kapitel 3 wird das Leftover Hash Lemma [HILL93] vorgestellt. Dies ist ein Verfahren zur blockweisen
Extraktion aus Quellen mit bekannter und nicht verschwindender min-Entropie. Da dieses Verfahren sehr
viel initialen Zufall benétigt (die Menge an initialem Zufall ist grofer als die an zu bearbeitendem), wird es
iiblicherweise nicht direkt zur Extraktion eingesetzt, sondern als Komponente komplexerer Verfahren (siehe
z.B. [NTS95]).

Wir werden das Leftover Hash Lemma etwas generalisieren und dann im néchsten Kapitel zur Konstruktion
unseres Extraktionsverfahrens verwenden.

In Kapitel 4 stellen wir eine Methode vor, wichtige Eigenschaften der vorliegenden Zufallsquelle in einer
Funktion wiederzugeben, der Symbolgewichtung.

Mit Hilfe dieser Kennfunktion kénnen wir dann ein Extraktionsverfahren formulieren, welches sehr wenig
Voraussetzungen an die Quelle stellt (insbesondere wird keine nicht verschwindende min-Entropie vorausge-
setzt). Dieses Verfahren analysiert jeden zu bearbeitenden Block und extrahiert aus diesem je nach Eignung
mehr oder weniger Zufall. Daher nennen wir dieses Verfahren adaptive Extraktion.

Wir schliefsen das Kapitel mit einigen beispielhaften Symbolgewichtungen ab.

In Kapitel 5 untersuchen wir eine Modellierungsmethode fiir Zufallsquellen, welche eine Erweiterung des Kon-
zepts der HMM (hidden Markov models) darstellt. Fiir so modellierte Quellen kénnen wir dann ein Berech-
nungsverfahren fiir die Symbolgewichtung angeben und somit aus ihnen adaptiv Zufall extrahieren.
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Auch fiir CHMM geben wir einige Beispiele zusammen mit den zugehdrigen Symbolgewichtungen an.

In Kapitel 6 priifen wir, inwiefern die fiir das Resultat der adaptiven Extraktion gezeigten Eigenschaften
in formale Sicherheitsbeweise fiir kryptographische Protokolle eingearbeitet werden kénnen. Hierbei legen wir
unserer Augenmerk auf vergleichende Sicherheitsbegriffe, welche ein Protokoll dann als sicher bezeichnen, wenn
es von einer gewissen Referenzfunktionalitéit ununterscheidbar ist.

In Kapitel 7 reiffen wir Mdoglichkeiten an, wie bei einer vorgegebenen Quelle mit statistischen Tests die po-
stulierten Eigenschaften der Quelle gepriift werden koénnen. Insbesondere entwickeln wir einen Test fiir die
Symbolgewichtung.

In Kapitel 8 wird zunéchst ein im Rahmen dieser Arbeit entstandenes Testprogramm vorgestellt, welches es
ermoglicht, einige der hier priasentierten Methoden auszuprobieren. Es eignet sich aber nicht fiir die Anwendung
in der Praxis, hierzu sind optimierte und wenn moglich verifizierte Programme vonnéten.

Danach wird eine an der LMU Miinchen implementierte physikalische Quelle untersucht und die praktische
Anwendbarkeit der hier entwickelten Verfahren auf diese Quelle aufgezeigt (sowohl durch eine Modellierung
als CHMM, als auch durch die Schitzung der Symbolgewichtung mittels statistischer Methoden).

Die Beweise zu den Aussagen in den obigen Kapiteln sind ausgelagert, um das fliissige Lesen dieser Arbeit zu
vereinfachen. Sie finden sich in Anhang A und sind von den zugehorigen Satzen aus referenziert.

1.4 Bisherige Ergebnisse

Im folgenden betrachten wir einige bereits bekannte Ergebnisse auf dem Gebiet der Zufallsextraktion.

1.4.1 Extraktion perfekten Zufalls

Ein frithes Extraktionsverfahren wird in [vN51] beschrieben, im folgenden die Von-Neumann-Extraktion ge-
nannt. Hier wird davon ausgegangen, dafs eine Quelle vorliegt, die unabhéngig identisch verteilte Zufallsbits
liefert, jedoch ist die Verteilung der einzelnen Bits unbekannt. Das Verfahren sieht jetzt vor, jeweils Paare
von Bits zu betrachten. Sind die beiden Bits gleich, so wird das Paar verworfen, ansonsten wird das erste der
beiden Bits ausgegeben. Da die Paare 01 und 10 gleich wahrscheinlich sind, erhalten wir eine gleichverteilte
Ausgabe. In der hier vorgestellten Form werden noch unnétig viele Zufallsbits verworfen, in z. B. [Eli72] oder
[Per92] wird erldutert, wie das Verfahren erweitert werden kann, so daft asymptotisch der gesamte der Folge
innewohnende Zufall extrahiert wird.
Die Von-Neumann-Extraktion hat die folgenden Vorteile:

e Der resultierende Zufall ist perfekt zufillig (d.h. gleichverteilt, nicht nur annidhernd gleichverteilt).

e Es wird kein initialer Zufall bendtigt (damit ist eine kleine Menge an perfektem Zufall, die vom Extrak-
tionsverfahren zusétzlich verwendet wird, gemeint).

Leider hat dieses Verfahren auch den grofsen Nachteil, dafs es nur auf eine sehr kleine Klasse von Quellen
anwendbar ist. Damit ist es fiir die meisten Anforderungen nicht geeignet.

Fiir Quellen, die als Markov-Prozefs n-ter Ordnung mit unbekannten Transitionswahrscheinlichkeiten beschrie-
ben werden konnen, wurde in [Blu86] ein Extraktionsverfahren angegeben. Es teilt die Vorteile der Von-
Neumann-Extraktion (perfekte Zufilligkeit, kein initialer Zufall), die betrachtete Klasse von Quellen ist aber
wesentlich grofser. Da unabhingig identisch verteilte Quellen das gleiche sind wie Markov-Prozesse nullter
Ordnung, ist das Verfahren aus [Blu86] echt allgemeiner als die Von-Neumann-Extraktion.

1.4.2 Extraktion guten Zufalls

Fiir die exakte Simulation physikalischer Quellen sind Markov-Prozesse nicht geeignet, wie das folgende Beispiel
zeigen soll: Man stelle sich eine Quelle vor, die anhand eines komplexen, chaotischen physikalischen Prozesses
eine Wahrscheinlichkeit aus I := [1 — §, 1 + 6] wihlt und mit dieser dann eine 1 ausgibt. Um dies mit einem
Markov-Prozefs zu modellieren, miifite man den chaotischen Prozefs auch als Markov-Prozeft beschreiben, was
wohl nicht mdoglich ist.

Daher wird man iiber die Quelle einfach nur aussagen, daf die Wahrscheinlichkeit fiir die Ausgabe einer 1,
gegeben alle zuvor getétigten Ausgaben, in I liegt. So beschriebene Familien von Quellen wurden in [SV86]
als slightly random sources mit Parameter § eingefiithrt. Dort wurde auch ein Extraktionsverfahren angegeben,
welches beliebig guten Zufall ausgibt (d.h. beliebig nah an der Gleichverteilung liegenden). Allerdings setzt



1.4 Bisherige Ergebnisse

das Extraktionsverfahren eine hinreichend grofe Anzahl von unabhingigen Quellen voraus, es wird gezeigt,
daft eine einzige nicht ausreicht.

Die grofere Allgemeinheit der Quellen erkaufen wir uns durch die folgenden Nachteile (gegentiber den in
den vorangehenden Absitzen beschriebenen Verfahren):

e Es geniigt nicht nur eine Quelle (wir brauchen zwar noch keinen initialen Zufall, dafiir aber mehrere
Quellen, was evtl. sogar storender sein kann als eine kleine Menge initialen Zufalls).

e Der erzeugte Zufall ist nicht mehr perfekt. Dieser Nachteil ist aber nicht grofs, da wir jede beliebige
Qualitdt erreichen konnen.

In [CG88] werden die eben vorgestellten Quellen noch verallgemeinert. Wir setzen nun fiir die Extraktion
nur noch voraus, daf jede Bitfolge einer gewissen (festen) Linge [, gegeben alle davor liegenden Bits, nicht
wahrscheinlicher ist als eine gewisse (feste) Wahrscheinlichkeit b.

In [CG88] wird dann ein Extraktionsverfahren erarbeitet, welches aus zwei Quellen des obigen Typs Zufall
beliebig hoher Qualitit erzeugt.

Will man die Quellen weiter verallgemeinern, so bietet es sich an, von einer Quelle X lediglich eine gewisse
min-Entropie zu verlangen. Dies bedeutet, daft eine Zahl k = H,,(X) gegeben ist, und daf jede Ausgabe der
Quelle héchstens die Wahrscheinlichkeit 2~% hat. Extraktion aus diesen Quellen ist fiir die Komplexitétstheorie
wichtig, fiir einen Uberblick iiber diese Problematik siehe [Nis96].

Mochte man einen Extraktor fiir solche Quellen konstruieren, so muf man, bevor man ein Bit ausgeben
kann, die gesamte Ausgabe der Quelle verarbeiten, da ob der schwachen Voraussetzungen die gesamte der
Quelle innewohnende Zufélligkeit in den hinteren Bits befindlich sein kann. Damit eignet sich diese Quellen-
modellierung nur fiir Quellen mit endlichem Wertebereich.

Hier eine kurze Ubersicht iiber die verschiedenen in der Literatur beschriebenen Verfahren mit ihren Para-
metern (weitgehend ibernommen aus [NTS95, Tre99]):

Referenz k m d €
[GW94, SZ94] Q(k) (1+Q(1) -k k 2 (k)
[Zuc97] Q(n) Q(k) O(logn -loge™?) beliebig
[SZ94] Q(nt/?+7) nd, 6 <~y O(logn) beliebig
[NTS95] beliebig k polylogn - loge™* >2-Vn
[NTS95] Qn) Q(nd), <~ O(logn -loglog...logn) i
[Tre99] ne() kM O(logn —loge - (1 — llgggfl)) beliebig
[HILL93] beliebig  k — O(loge™1) n+ O(n) beliebig

Hierbei bedeuten
e die Eingabelinge n die Menge an Bits, die die Quelle liefert,

e die min-Entropie k eine untere Schranke fiir die min-Entropie der von der Quelle gelieferten n Bit (siche
Definition 2.4),

e die Ausgabelinge m die Menge an resultierendem Zufall,

e der initiale Zufall d die Menge an perfekt zufilligen Bits, welche in die Verarbeitung zusétzlich zu dem
der Quelle entnommenen Zufall einfliefen mufs,

e und schlieklich e den Abstand des resultierenden Zufalls zur Gleichverteilung (wir betrachten dann — loge
als die Qualitit des Zufalls).

Der letzte in dieser Tabelle angegebene Extraktor (Leftover Hash Lemma [HILL93|, siche auch Lemma 3.3
in der vorliegenden Arbeit) braucht ziemlich viel initialen Zufall, dafiir findet sich dieser in unverdnderter Form
als Teil des Resultats wieder, er wirkt gewissermafsen als Katalysator. Diese Eigenschaft kann dann sehr von
Nutzen sein, wenn man diesen Extraktor als Teilkomponente anderer Extraktoren benutzen will. Auch bei uns
wird das Leftover Hash Lemma eine zentrale Rolle spielen.
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1.5 Adaptive Extraktion

Vergleichen wir die im vorangegangenen Abschnitt vorgestellten Extraktoren in Hinblick auf die Struktur der
unterstiitzten Quellen, so erkennen wir zwei Typen:

e Die Extraktoren in Abschnitt 1.4.1 unterstiitzen Quellen verschiedenster Qualitit (sogar konstante Quel-
len sind zugelassen), und liefern je nach Qualitét unterschiedliche Mengen an Zufall.

e In Abschnitt 1.4.2 hingegen miissen alle zugelassenen Quellen ein gewisses Mindestmafs an Zufilligkeit
enthalten, denn die Linge der erzeugten Zufallsfolge ist fest.

Die Quellen des ersten Typs sind also gewissermafien in der Lage, die Qualitidt der Quelle zu schitzen und sich
daran anzupassen. Bei Extraktoren aus Abschnitt 1.4.1 wird dies aber damit erkauft, daf die Quellen jeweils
nur wenige verborgene Parameter haben (nimlich die Transitionswahrscheinlichkeiten des Markov-Prozesses).

Bei den in Abschnitt 1.4.2 prasentierten Extraktoren hingegen ist die Familie von Quellen i. a. viel grofser,
da z.B. zur vollstindigen Beschreibung einer slightly random source fiir jeden Zeitpunkt die Wahrschein-
lichkeit fiir die Ausgabe einer 1 abhfngig von allen bisherigen Ausgaben festgelegt sein mufs, und alle diese
Wahrscheinlichkeiten beliebige Werte aus [3 — 4, 1 + 6] annehmen kénnen.

In der vorliegenden Arbeit versuchen wir, diese beiden Vorteile zu kombinieren, und erhalten folgendes
Verfahren, welches wir die adaptive FExtraktion taufen:

e Zerlege die zu verarbeitende Folge in Blocke.

e Zu jedem Block erstelle eine untere Abschitzung n (die Symbolgewichtung), wieviel Zufall in diesem
enthalten ist.

e Behandle den Block wie die Ausgabe einer Quelle mit min-Entropie n und extrahiere mit dem Leftover
Hash Lemma (siehe Ende des vorangegangenen Abschnittes und Satz 3.6) 1 — ¢ Zufallsbits. Hierbei ist ¢
eine von verschiedenen Parametern des Extraktionsverfahrens (z. B. der gewiinschten Qualitit) abhéngige
Konstante.

e Konkateniere die aus den einzelnen Blocken extrahierten Zufallsfolgen.

Es bleibt die Frage offen, wie man die in einem Block enthaltene Zufélligkeit abschidtzen kann. Angelehnt an
die Definition der min-Entropie schlagen wir folgendes vor:

Es sei z der zu untersuchende Block und « die dem Block vorangehende Ausgabe (die gesamte Vergangen-
heit). Dann bestimmen wir fiir jede mogliche Quelle X die Wahrscheinlichkeit, daf die Symbolfolge x nach dem
Prifix a ausgegeben wird. Der negative Logarithmus dieser Wahrscheinlichkeit ist dann der Informationsgehalt
Ix des Blockes z, d. h. dessen Zufilligkeit. Da wir nicht wissen, was fiir eine Quelle vorliegt, verwenden wir als
untere Abschétzung das Minimum von Iy iiber alle zugelassenen Quellen X.

Eine genaue Beschreibung und formale Analyse dieser Methode findet sich in Kapitel 4.

Die so definierte adaptive Extraktion hat nun die folgenden Eigenschaften:

e Es wird zur Laufzeit bestimmt, wieviel Zufall wir der Quelle entnehmen diirfen und die Lénge der Ausgabe
entsprechend angepafit.

e Das Verfahren stellt keine Voraussetzungen an die Familie von Quellen. Allerdings sind Familien denkbar,
bei denen die Symbolgewichtung verschwindet, so daff der Extraktor zwar im Prinzip korrekt arbeitet,
die Ausgabe allerdings die Lange 0 hat.

e Der erzeugte Zufall ist nicht perfekt (nicht exakt gleichverteilt) aber beliebig gut (beliebig nah an der
Gleichverteilung).

e Es ist ein gewisses Mafs an initialem Zufall nétig (das Doppelte der Blockldnge).

e Ob das Verfahren effizient ist, hingt davon ab, ob sich die Symbolgewichtung effizient berechnen laft.
In vielen Féllen aber 1aft sich zumindest eine gute untere Abschitzung durch Tabellierung der Symbol-
gewichtung sehr effizient berechnen (siehe Lemma 4.6 und die darauf folgende Bemerkung).

e Ist die vorliegende Quelle vollstindig bekannt (d.h. hat sie keine unbekannten Parameter), so kann der
Erwartungswert iiber die Linge der Ausgabe beliebig nah an die Entropie der Quelle gebracht werden
(sieche Lemma 4.11).
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1.6 CHMM-Quellen

Zuletzt wollen wir noch betrachten, wie sich die adaptive Extraktion verhélt, wenn man die in Abschnitt 1.4
erwihnten Familien von Quellen zugrundelegt.

e Bei den in Abschnitt 1.4.1 beschriebenen Familien liegt die erwartete Linge der erzeugten Zufallsfolge
beliebig nah an der Entropie der verarbeiteten Folge (fiir hinreichend grofie Blockléngen).

e Bei slightly random sources extrahieren wir aus jedem Block gleich viel Zufall, das Verfahren degene-
riert also zu einem nicht-adaptiven Spezialfall. Die erwartete Lange des erzeugten Zufalls entspricht der
kleinsten Entropie aller Quellen der betrachteten Familie.

e Bei Quellen, fiir die lediglich die min-Entropie bekannt ist, liefert unser Verfahren nur dann eine nicht
verschwindende Menge an Zufall, wenn die Blocklinge gleich der Lénge der gesamten Eingabe ist. In
diesem Fall entartet die adaptive Extraktion zu einer Anwendung des Leftover Hash Lemmas ([HILL93],
letzte Zeile in der Tabelle auf Seite 9).

e Besondere Vorteile hat unser Verfahren vor allem bei Quellen, die ihre Parameter verdndern kdnnen,
d.h. manchmal guten und manchmal schlechten Zufall liefern. Ein Beispiel fiir eine solche Quelle wére
eine, welche zu jedem Zeitpunkt wihlen kann, ob sie gleichverteilte Bits ausgibt oder konstant 0 (siehe
Abschnitt 5.2.4). Aus dieser Quelle kann keines der im vorangegangenen Abschnitt vorgestellten Verfah-
ren etwas extrahieren; mit adaptiver Extraktion aber erhalten wir solange Daten, wie die Quelle nicht
konstant 0 ausgibt.

1.6 CHMM-Quellen

Um die Modellierung von Quellen und die Berechnung der zugehorigen Symbolgewichtung zu vereinfachen,
stellen wir in Kapitel 5 eine Verallgemeinerung des Konzepts der HMM (hidden Markov models) vor. Anders
als ein HMM beschreibt ein CHMM eine Quelle nicht vollstindig, sondern schrinkt lediglich die Wahrschein-
lichkeiten fiir bestimmte Transitionen ein. Damit ergibt sich fiir jedes CHMM eine ganze Familie von Quellen.

Wir erlédutern dann weiter, wie man fiir eine CHMM-Quelle die zugehdrige Symbolgewichtung errechnen
kann. Dies ist (im Rahmen der Rechengenauigkeit) exakt moglich, somit eignen sich CHMM-Quellen besonders
gut fiir die adaptive Extraktion.

Weiterhin geben wir einige Beispiele, was fiir Quellen man mit CHMM modellieren kann. Dazu gehoren
unter anderem die slightly random sources (Abschnitt 5.2.5) und die im vorangegangenen Abschnitt erwihnte
Quelle, die konstant 0 ausgeben kann (Abschnitt 5.2.4).

1.7 Praktische Anwendung

Als Beispiel fiir eine praktische Anwendung dient eine an der LMU Miinchen entwickelte und realisierte phy-
sikalische Quelle. Wir untersuchen diese in Abschnitt 8.2.

Zunichst reiffen wir Moglichkeiten zur Modellierung der Quelle als CHMM an. Danach untersuchen wir
die Quelle mittels statistischer Tests (und in Abschnitt 8.1 vorgestellter Software). Hierdurch erhalten wir
experimentell eine Aussage dariiber, wie die Symbolgewichtung fiir verschiedene Einstellungen der Miinchner
Quelle aussieht. Mit dieser Information lassen sich dann die Extraktionsraten bestimmen.

Wir kommen zu dem Schlufs, dafs es — eine hinreichend schnelle Hardware fiir die in der Extraktion vorkom-
menden Faltungen vorausgesetzt — ratsamer ist, die Quelle schlechten Zufall mit hoher Ausgaberate erzeugen
zu lassen, als guten, bei dem die Datenrate dann wesentlich geringer ist. Dies liegt daran, dafs die durch Verrin-
gerung der Ausgaberate erreichte Verbesserung im wesentlichen einfach einem Weglassen von Bits entspricht,
wohingegen die adaptive Extraktion auf die Struktur der von der Quelle gelieferten Daten eingeht, und somit
bessere Ergebnisse erzielt.
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Kapitel 2
Notation und mathematische Grundlagen

2.1 Notation

Im folgenden werden wir einige Konventionen mathematischer Notation etablieren, die in dieser Arbeit gelten
sollen. Der Inhalt dieses Abschnitts vermittelt keine Erkenntnisse, ist aber insbesondere wichtig, wenn formale
Details oder die Beweise in Anhang A verstanden werden sollen. Man beachte auch das Symbolverzeichnis auf
Seite 108.

Will man sich nur einen Uberblick iiber die in dieser Arbeit untersuchten Aussagen verschaffen, so ist eine
Kenntnis dieser Konventionen nicht zwingend vonndten.

2.1.1 Zahlen und Zahlenmengen

Es seien

N die Menge der natiirlichen Zahlen ohne 0,

Ny die Menge der natiirlichen Zahlen einschlieflich der 0,
R die Menge der reellen Zahlen,

R~ die Menge der positiven reellen Zahlen,

R>o die Menge der nichtnegativen reellen Zahlen.

Es bezeichne log durchgehend den Logarithmus zur Basis 2.

Fiir # € RM (wobei M eine abzihlbare Menge sei) bezeichne ||z||; die Betragssummennorm von z, d. h.

Izl =) lail.

ieM
Weiterhin bezeichne R} die Menge der normierten Tupel in R, genauer
RM .= {z ¢ ]Rglo el = 13

In RM (oder einer Teilmenge davon), bezeichne e; (i € M) den Einheitsvektor mit

(e); = {1, i=J,

0, sonst.

Das Symbol 1, bezeichne die Einheitsmatrix in F"*" wobei F ein aus dem Zusammenhang ersichtlicher
Korper sei.

Der Ausdruck Toeplitz(F™*") bezeichne die Menge der (m x n)-Toeplitz-Matrizen iiber dem Korper I, d. h.
die Matrizen 1" mit

Tij =Ty (i—j=1i—3",
also die Matrizen mit konstanten Diagonalen und Nebendiagonalen.
Es bezeichne L ein undefiniertes Ergebnis. Wir setzen fest, daf 0- L = 1L -0=0und co+ L = 1 + 0o = 0.}

Ist M C RU{L}, so verhalten sich Mengenoperationen wie sup, inf, max oder min auf M wie auf M \ {L}.
Insbesondere ist dann sup{ L} = sup) = —oo und max{ L} = max{ = L und inf, min analog.

!Dies ermdglicht es u.a., P(A|B)P(B) = P(AB) zu schreiben, ohne die Bedingung P(B) > 0 immer erwiihnen zu miissen.
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2.2 Quellen

2.1.2 Operationen auf Mengen, Folgen und Funktionen

Die Menge M* bezeichne die Menge der abbrechenden Folgen (Wérter) iiber M # () und MY die der nicht
abbrechenden. In einigen Fillen bevorzugen wir, die Indizierung der Folge mit O beginnen zu lassen, wir
schreiben dann M™No.

Ist « eine Folge, so bezeichne |z| die Lénge dieser Folge, also |z| € Ny fiir abbrechende Folgen (Wérter), und
|z] = oo fiir nicht abbrechende.

Sind z und y zwei Folgen, so bezeichne zy die Konkatenation von x und y, d.h.

x; 1 < |z
op); ::{ oo i<,

Yielao|, > |z].
Der Ausdruck x,y hingegen bezeichne das Paar bestehend aus z und y, also (z,y)1 =z, (z,y)2 = y.
Liegt eine abbrechende Folge x vor, und ist ¢ > |z|, so sei z; = L.
Ist x eine Folge, so sei w,(z) die Anzahl der Vorkommen von o in z, formal

wy(z) = Z 1.

i<|z]
r;=0

Der Spezialfall w; (x), z € {0,1}* ist das Hamming-Gewicht von z.
Das Symbol A bezeichne das leere Wort (d.h. A ist die Folge mit |A| = 0).

2.1.3 Ereignisse und Wahrscheinlichkeiten
Ist A irgendeine Aussage, so sei 6(A) definiert durch

1, Ai h
(5(A)::{ , 1st wahr,
0, sonst.

Zum Beispiel ist §(a® = b) = 1 genau dann, wenn a® = b.

Ist X eine Zufallsvariable, die deterministisch von zwei unabhéngigen Zufallsvariablen A und B abhéngt (also
X = f(A, B)), so bezeichne
PB:b(X S M) = P(f(A,b) S M)

Analoge Interpretationen von Pp—; gelten fiir andere Ereignisse und Darstellungen von X. Beispiel: Es sei
X = A+ B, und A, B unabhingig gleichverteilt auf [0, 1]. Dann ist

Pp_:(X<1)=PA+3<1) =3

Eine intuitive Vorstellung von Pp—;(...) ist P(...|B = b), formal ist diese aber nicht zuldssig, da zumeist
P(B=b)=0.

Auferdem muf eine kanonische Darstellung X = f(A, B) existieren, damit diese Notation definiert ist.
Dies ist im Einzelfall zu verifizieren.

2.2 Quellen

Im folgenden werden wir kldren, was wir formal unter einer Quelle bzw. einer Familie von Quellen verstehen.

Definition 2.1: Quelle
Es sei Y. eine endliche, nichtleere Menge. Eine Quelle X tber dem Alphabet ¥ ist eine Zufallsvariable X,
welche Werte in £* U XN annimmt. O

Eine Quelle ist also ein irgendwie gearteter Zufallsprozeft, welcher eine Folge von Symbolen aus einer gegebenen
Menge produziert, und welche — hier unterscheidet sich unser Begriff ein wenig von iiblichen Definitionen (wie
z.B. der des Begriffs discrete source in [Sha48]) — auch abbrechen kann (aber nicht muf).

Diese Erweiterung des Begriffs ist notwendig, da wir Extraktionsverfahren untersuchen werden, die unter
bestimmten Bedingungen nicht mehr in der Lage sind, weitere Symbole zu produzieren.
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2 NOTATION UND MATHEMATISCHE GRUNDLAGEN

Ein Beispiel fiir ein solches Extraktionsverfahren ist das folgende: Es sei eine Quelle X iiber dem Alphabet
¥ :={0,1,7} gegeben mit unabhingigen X; und P(X; = 0) = P(X; = 1). Dann kann man Y definieren als
die Teilfolge von X bestehend nur aus den Symbolen 0 und 1. Diese resultierende Folge Y ist dann perfekt
zufillig (siehe Definition 2.10), aber falls z.B. P(X; = 0) = P(X; = 1) = 0 fiir fast alle i € N, so bricht diese
Folge ab.

Man beachte, daf X; auch bei einer abbrechenden Folge X fiir alle i € N sinnvoll ist, wir schreiben bei
Indizes jenseits des definierten Bereichs X; = L.

Da wir zumeist nicht genau angeben kénnen, welche Verteilung die Ausgabe einer vorliegenden physikalischen
Quelle hat, werden wir hauptsichlich Familien von Quellen betrachten:

Definition 2.2: Familie von Quellen
Eine Familie X von Quellen ist eine Menge von Quellen, alle {iber dem gleichen Alphabet X y. a

Die Einschrankung, daf alle Quellen in einer Familie das gleiche Alphabet haben, ist eine natiirliche, da die
Darstellung des Alphabets meist bei der Konstruktion gewéhlt wird und somit bekannt ist.

2.3 Entropie und Zufilligkeit

In diesem Abschnitt werden wir einige Definitionen fiir Mafte von Zufilligkeit anfithren, manche davon auf
beliebige diskrete Zufallsvariablen anwendbar, manche nur auf Quellen.
Das wohl wichtigste und bekannteste Maf wurde schon in [Sha48] vorgestellt:

Definition 2.3: Entropie

Die Entropie (oder Shannon-Entropie) H(X) einer diskreten Zufallsvariable X iiber einer Menge M ist
definiert als
H(X):=- )Y P(X =z)log P(X = z).
zeEM

Fiir Zufallsfolgen X = (X3, X5, ...) aber ist die Entropie definiert durch
H(X):= nhﬁrgo %H(Xl X)),

falls existent. O
Dariiber hinaus benétigen wir noch die folgenden zwei Varianten der Entropie:

Definition 2.4: min-Entropie

Die min-Entropie H (X) einer diskreten Zufallsvariable X {iber einer abzéhlbaren Menge M ist definiert
als

H,(X):=—sup log P(X = x). O
zeM
Fiir die beiden vorstehenden Definitionen gibt es die folgende Interpretation: Wenn wir I(z) := —log P(X = x)

als den Informationsgehalt des Ereignisses x ansehen, so ist die Entropie von X die zu erwartende Information
EI(X) und die min-Entropie die garantierte Mindestinformation min ().

Definition 2.5: Renyi-Entropie
Die Renyi-Entropie H pg.,(X) einer Zufallsvariable X iiber einer Menge M ist definiert als

Hgen(X) := —log > P(X = ). 0
zeM

Man beachte, daff 2~ Hren(X) = P(X = X') (wobei X' eine von X unabhiingige Zufallsvariable gleicher Vertei-
lung sei), also die Renyi-Entropie ein Mafs fiir die Kollisionswahrscheinlichkeit zweier unabhéngiger Stichproben
ist.

Diese drei Mafse stehen in folgendem Verhéltnis zueinander:
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2.3 Entropie und Zufélligkeit

Lemma 2.6: Abschitzungen der min-Entropie
Fiir jede diskrete Zufallsvariable X gilt:

Hoo(X) SH(X)a HOO(X)SHRen(X)' O

Beweis siehe Abschnitt A.2.1, Seite 52.

Eine weiteres Maf der Zufalligkeit ergibt sich durch den Abstand einer Verteilung zur Gleichverteilung, hierzu
zunéchst folgende Definition:

Definition 2.7: Statistischer Abstand
Der statistische Abstand (statistical distance) SD(X;Y) zwischen zwei diskreten Zufallsvariablen X, Y ist

definiert als
SD(X;Y) =1 ) |P(X =a) - P(Y =a),
a€M

wobei M die Vereinigung der Wertebereiche von X und Y sei.

Hierbei miissen X und Y nicht zwingend das gleiche Wahrscheinlicheitsmaf teilen.
Ist E ein Ereignis, so schreiben wir abkiirzend SD(X;Y||E) fiir SD(X|E;Y|E). O

Eine niitzliche Interpretation des statistischen Abstands liefert das folgende Lemma:

Lemma 2.8: Statistischer Abstand
Fiir diskrete Zufallsvariablen X und Y gilt

SD(X;Y) = glcaﬂp (XeT)-P(Y €T,

wobei M die Vereinigung der Wertebereiche von X und Y sei. d

Beweis siehe Abschnitt A.2.2, Seite 52.

Dieses Lemma sagt aus, daf es keinen Test 7" gibt, der die beiden Verteilungen mit einer Wahrscheinlichkeit
groker als SD(X;Y) unterscheiden kann. Diese Interpretation ist sehr wichtig fiir die Anwendung unserer
Ergebnisse in der Kryptologie, da allgemeine Definitionen der Sicherheit von Protokollen stark vereinfacht
die folgende Bedingung stellen: Egal was passiert (sprich: egal welchen Test wir verwenden), das Ergebnis
weicht nicht wesentlich von dem im hypothetischen Idealfall (sprich: der Gleichverteilung) ab. Siehe hierzu
auch Kapitel 6.

Wichtige Eigenschaften des statistischen Abstands zeigt das folgende Lemma:

Lemma 2.9: Eigenschaften des statistischen Abstands

Es seien X, Y, Z, U Zufallsvariablen, U unabhéngig von {X,Y, Z}, und f eine Funktion, die mindestens
auf den Wertebereichen von X und Y definiert ist. Dann gilt

SD(X;Y) 2 SD(f(X); f(Y)), (1)
SD(X;Y) =SD(XU;YU), (2)
SD(X;Z) <SD(X;Y)+SD(Y; 2), (3)
SD(X Z; YZ) > P(Z=2)SD(X;Y|Z = 2), (4)
zEMyz
wobei Mz der Wertebereich von Z sei.
Ist f injektiv, so liegt in (1) Gleichheit vor. O

Beweis siehe Abschnitt A.2.3, Seite 53.

Wir kommen nun zur Definition der Zufalligkeit.

Definition 2.10: Perfekt zufillig
Sei S eine diskrete Zufallsvariable mit Werten aus Mg. Eine Quelle X iiber einem Alphabet X heifst perfekt
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2 NOTATION UND MATHEMATISCHE GRUNDLAGEN

zufdllig unter Kenntnis von S, wenn fiir alle n € N U {oo} und s € Mg mit P(|X| =n,S =s) > 0 gilt:
X|(|X| =n,S = s) ist gleichverteilt auf X" (mit ¥ := L),

Wird kein S angegeben, so setzen wir S := A. d

Diese Definition der Zufilligkeit spiegelt wieder, dafs wir durchaus zulassen wollen, dafs eine Zufallsquelle
aufhdrt, Daten zu liefern, ohne dadurch als nicht zufillig klassifiziert zu werden. Man beachte aber, daf tiber
die Verteilung der Linge |X| nichts ausgesagt wird. Will man diese festlegen, so kann man Formulierungen
wie ,, X ist perfekt zufdllig und hat Lange [ oder ,, X ist perfekt zuféllig und bricht nicht ab“ verwenden.

Die Zufallsvariable S stellt eine Information dar, bei deren Kenntnis die Verteilung von X immer noch
perfekt zuféllig erscheint. Dieser Formalismus ist besonders wichtig bei der Modellierung von Seitenkanélen.

Da die obige Definition in den meisten Fillen ein unerreichbares Ziel darstellt, miissen wir uns oft mit einer
abgeschwichten Fassung begniigen:

Definition 2.11: e-zufillig

Sei S eine diskrete Zufallsvariable. Eine Quelle X {iber einem Alphabet ¥ heifit e-zufdillig unter Kenntnis
von S (¢ > 0), wenn es eine unter Kenntnis von S perfekt zufillige Quelle U mit SD(SX, SU) < € gibt. O

Man beachte, daff wir nicht SD(X,U || S = s) < e verlangen. Dies bedeutet, daf wir es tolerieren, wenn
fiir bestimmte s € Mg der statistische Abstand SD(X,U || S = s) grok wird, sofern S = s entsprechend
unwahrscheinlich ist.

Im Zusammenhang mit diesen Definitionen werden wir spéter das folgende Lemma bendtigen:

Lemma 2.12: Konkatenation von Zufallsquellen

Es seien S,Uy, ..., U, diskrete Zufallsvariablen, und U; sei perfekt zuféllig iiber ¥ unter Kenntnis von S,
Uj (J #19)-
Dann ist U ... U, perfekt zufillig unter Kenntnis von S. O

Der Beweis hierzu findet sich in Abschnitt A.2.4, Seite 54.
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Kapitel 3

Das Leftover Hash Lemma

Wir werden im Verlauf dieser Arbeit einen Mechanismus brauchen, um einen Block von Symbolen, beziiglich
dessen min-Entropie wir eine nichttriviale Abschétzung kennen, in einen méoglichst zufélligen umzuwandeln.?

Zunichst wollen wir iiberlegen, ob dies mittels eines deterministischen Prozesses moglich ist. Dies verneint
das folgende

Lemma 3.1: Unméglichkeit deterministischer Extraktion®
Sei M eine Menge, ¥ ein Alphabet mit #X =:n, k € R>o und k < log # M —logn. Weiter sei A" die Menge
aller Zufallsvariablen X mit Werten in M und He(X) > k, und schlieflich f: M — XU {L}.

Dann existiert ein X € X, so daf P(f(X) € {0, L}) =1 fiir ein o € ¥, und so daf fiir jede iiber ¥ perfekt
zufillige Zufallsvariable U gilt:

n—1

SD(f(X);U) =

(1-PU=1)). O
n
Beweis siehe Abschnitt A.3.1, Seite 55.

In unserem speziellen Fall ist M die Menge der Werte, die ein Block von n Symbolen annehmen kann, und
f der Extraktor.

Wir sehen, daf nur solche zufélligen Quellen hoher Qualitdt mit deterministischer Extraktion realisiert
werden konnen, die fast nie Daten liefern. Dies ist aber wiederum trivialerweise maoglich, z. B. ist die Quelle,
die immer L liefert, perfekt zuféllig.

Wir benétigen also eine gewisse Menge an initialem Zufall, der gewissermafen als , Katalysator” zur Verbesse-
rung des in unserer Quelle vorhandenen Zufalls dient. Da wir diesen initialen Zufall nicht nur fiir einen Block,
sondern zur Bearbeitung mehrerer Blocke verwenden wollen, brauchen wir eine Extraktionsfunktion, welche
den initialen Zufall wirklich nur zur , Katalyse* nutzt, also nicht als Teil des resultierenden Zufalls mit ausgibt.
Das sogenannte Leftover Hash Lemma leistet dies. Dieses soll im folgenden vorgestellt werden, wir préisentieren
dafiir zunéchst die folgende Definition:

Definition 3.2: Universelle Hashfunktion
Es sei
h:MgrxMx — MX
Dann heifit h universelle Hashfunktion, wenn #Myx > 1 und fiir alle z,2' € Mx, x # «' und a,a’ € My
gilt:
P(h(R,z) =a A h(R,2') =a') = (#My) >,

wobei R eine auf Mg gleichverteilte Zufallsvariable sei. d

Mit dieser Definition kénnen wir das Leftover Hash Lemma in der folgenden Fassung formulieren. Diese Fassung
entspricht in etwa der in [HILL93].*

Lemma 3.3: Leftover Hash Lemma, 1. Fassung

Es seien X, R, U Zufallsvariablen mit Werten in My, Mg bzw. M ¢, sowie k € R. Hierbei sei R gleichverteilt
auf Mg, U gleichverteilt auf My, Hgen(X) > k, sowie X, R,U stochastisch unabhéngig. Weiter sei h :
Mp X Mx — M eine universelle Hashfunktion.

2Kapitel 4 wird dann zeigen, wie wir solche Blécke erhalten, und wie wir die Ergebnisse des aktuellen Kapitels (welche sich
auf einen einzigen Block beziehen) auf mehrere Blécke anwenden.

3Die Unmoglichkeit bezieht sich natiirlich nur auf das hier angegebene Szenario, andere Voraussetzungen mégen eine Extraktion
zulassen.

4In [HILL93| sind die Wertemengen der Zufallsvariablen auf Blocke von Bits beschrinkt, der Beweis allerdings éndert sich
dadurch nicht wesentlich.
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3 DAS LEFTOVER HASH LEMMA

Dann ist
SD(R,h(R,X); R,U) < % #My -2k, O

Zum Beweis siche Abschnitt A.3.2, Seite 56.

Dieses Lemma sagt nun das folgende aus: Liegt eine Zufallsvariable X vor, iber die nur der Wertebereich und
eine untere Schranke fiir die min-Entropie bekannt ist, so kann unter Verwendung von initialem Zufall aus X
guter Zufall gemacht werden. Hierbei wichst die Qualitit, d.h. der negative Logarithmus des statistischen
Abstands zur Gleichverteilung, proportional zur der min-Entropie von X und fallt indirekt proportional mit
der Lange der Ausgabe (dem Logarithmus der Kardinalitit der Ausgabe).

Wir kénnen somit jede beliebige Qualitdt erreichen, indem wir die Blocklange vor Anwendung des Leftover
Hash Lemmas sehr grof wihlen im Vergleich zur Blocklinge nach dieser Anwendung.® Genauere Abschitzungen
(bei Kombination mit den in Kapitel 4 vorgestellten Mechanismen) finden sich in Satz 4.8 und Korollar 4.9.

Fiir sich genommen bringt diese Extraktion noch nicht viel, da die Menge an initialem Zufall zumindest
bei den unten vorgestellten universellen Hashfunktionen die des resultierenden Zufalls iibersteigt. Der Vorteil
liegt aber in der Wiederverwendbarkeit des initialen Zufalls (siche das néchste Kapitel), der bei Anwendung
auf mehrere Blocke ein gutes Verhéltnis zwischen initialem und resultierendem Zufall liefert.

Eine leichte Verbesserung in Hinblick auf die Menge an notwendigem initialem Zufall l4ft sich erreichen, indem
man statt universeller Hashfunktionen die folgende etwas weniger restriktive Klasse von Funktionen verlangt:

Definition 3.4: Universelle Quasi-Hashfunktion

Es sei
h:MRXMx—>MX.

Dann heifst h universelle Quasi-Hashfunktion, wenn es eine Familie von Bijektionen fz : My — M;(,
T € M, gibt, so daf
h: (MRXMR)XMX — M;»(
(r,7), x —  fr(h(r,z))

eine universelle Hashfunktion ist. O

Damit ergibt sich die folgende allgemeinere Fassung, in der lediglich in den Bedingungen ,universelle Hash-
funktion® durch ,universelle Quasi-Hashfunktion“ ersetzt wurde:

Lemma 3.5: Leftover Hash Lemma, 2. Fassung

Es seien X, R, U Zufallsvariablen mit Werten in My, Mg bzw. M ¢, sowie k € R. Hierbei sei R gleichverteilt
auf Mg, U gleichverteilt auf My, Hren(X) > k, sowie X, R,U stochastisch unabhéngig. Weiter sei h :
Mp X Mx — M eine universelle Quasi-Hashfunktion.

Dann ist
SD(R,h(R,X); R,U) < £1/#My -27F. O

Der Beweis findet sich in Abschnitt A.3.3, Seite 57.

Ein weitere Verallgemeinerung des Leftover Hash Lemmas ist die Einfiilhrung von Seitenkanélen. Man stelle
sich vor, daf die Quelle neben ihrer Ausgabe (die unser Gesamtsystem nur in nachbearbeiteter Form verldft),
noch einen Seitenkanal hat, iiber den Informationen am Extraktor vorbei nach aufsen gelangen. Im allgemeinen
wird dies die ganze Nachbearbeitung zunichte machen, denn der Seitenkanal konnte eine Kopie der Ausgabe
enthalten, und dann wére die Entropie der nachbearbeiten Ausgabe hochstens die des initialen Zufalls (und
bei Wiederverwendung desselben ist sogar die Entropie aller Blocke zusammen gleich der des initialen Zufalls).
In dem Falle aber, daf der Seitenkanal nur eine beschrinkte Anzahl von Werten annehmen kann, tritt dieser
Effekt nur in beschrinktem Mafe auf, so daf wir ihn durch geeignete Mafsnahmen wie Erh6hung der min-
Entropie der Eingabe oder Verkiirzung der Ausgabe kompensieren kénnen. Man kann sich in diesem Fall
vereinfachend vorstellen, dafs die Information, die der Seitenkanal enthélt, sich einfach in einer entsprechenden
Verringerung der Information der Zufallsdaten niederschligt. Formalisiert wird dieser Sachverhalt von der
endgiiltigen Fassung des Leftover Hash Lemmas:

5Vorausgesetzt, die min-Entropie steigt hinreichend schnell mit der Blocklinge. Dies ist aber meist gegeben.
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3.1 Hashfunktionen

Satz 3.6: Leftover Hash Lemma

Es seien X, R,U und S Zufallsvariablen mit Werten in Mx, Mg, M4 bzw. Mg, sowie k € R. Dabei seien
(X,S), R und U unabhéngig. Es sei U auf M und R auf Mg gleichverteilt. Schlieflich seien Hgen(X) > &
und h : Mg x Mx — My eine universelle Quasi-Hashfunktion.

SD(S, R, h(R, X); S,R,U) < L #Mg/#M; -2-F. O

Der Beweis hierzu findet sich in Abschnitt A.3.4, Seite 58.

Dann ist

3.1 Hashfunktionen

Im folgenden sollen ein paar universelle Hashfunktionen und Quasi-Hashfunktionen vorgestellt werden. Weitere
Beispiele finden sich u. a. in [Sti02].

Lemma 3.7: Affine Transformationen als universelle Hashfunktion
Es sei IF ein endlicher Korper, Mx := ", M4 := F™ mit n > 1, m < n, und Mp := F™*" x F™ =

F(n+1)  Dann ist
h: Mg x Mx — Mf(

(M,b), z +— Mz+b

eine universelle Hashfunktion. O
Beweis siehe Abschnitt A.3.5, Seite 58.

Lemma 3.8: Affine Toeplitz-Transformationen als universelle Hashfunktion

Es sei IF ein endlicher Korper, Mx := F", M := F™ mit n > 1, m < n, und Mg := Toeplitz(F™*") x
F™ = [F?m+7~1 Dann ist
h: MrpxDMx —> MX

(M,b), v +— Mzx+b

eine universelle Hashfunktion. O
Beweis siehe Abschnitt A.3.6, Seite 59.

Lemma 3.9: Lineare Abbildungen als universelle Quasi-Hashfunktion
Es sei IF ein endlicher Korper, Mx =", M ;=™ mit n > 1, m <n, und Mg :=F"™*" = F"". Dann
ist
h: Mp x Mx —> Mf(
M, x — Mz

eine universelle Quasi-Hashfunktion. O

Beweis siehe Abschnitt A.3.7, Seite 60.

Lemma 3.10: Toeplitz-Transformationen als universelle Quasi-Hashfunktion

Es sei IF ein endlicher Korper, My := F", My := F™ mit n > 1, m < n, und Mg := Toeplitz(IF™*") =
Fmtn-1 Dann ist
h: Mp x Mx —> Mf(

M, x — Mz

eine universelle Quasi-Hashfunktion. O

Beweis siehe Abschnitt A.3.7, Seite 60.

Alle diese Hashfunktionen setzen ein Alphabet der Kardinalitdt p™ voraus (p prim), dies jedoch stellt kein
grofleres Problem dar, da einfach ein groferes Alphabet als das der Modellierung der Quelle zugrundeliegende
angenommen werden kann, hierbei vervielfacht sich der Logarithmus der Kardinalitit um maximal 1,21,°

SWir nehmen dabei an, daf die jeweils nichstgrofere Primpotenz gewihlt wird. Die Kardinalitit N kénnen wir als N > 2
annehmen. Ist N > 32, so ist 2"~! < N < 2" mit n > 6, also log2"/log N < n/(n —1) < 1,2. Fiir N = 2,..., 32 stellt man durch
Ausrechnen fest, daf der Faktor maximal ist fiir N = 10, ndmlich log 16/ log 10 < 1,21.
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3 DAS LEFTOVER HASH LEMMA

daher wird sich (bei gleicher Qualitét) die erreichbare Ausgabeblocklinge (und damit die Rate) in Satz 4.8
um hochstens diesen Faktor verringern.

Ist zwingend vonndéten, daf das Ausgabealphabet mit dem Eingabealphabet {ibereinstimmt, so mufs dann
noch eine nachtrigliche Extraktion durchgefiihrt werden. Die einfachste bestiinde darin, einfach alle nicht
gewiinschten Symbole aus dem Ausgabestrom zu entfernen, der Verlust betridgt dann hochstens 50 %. Es sind
aber natiirlich auch effizientere Verfahren denkbar, die sogar den Verlust, den wir uns durch die Vergroferung
des Alphabets eingehandelt haben, beliebig gut wieder kompensieren.

An die Blockldangen (sowohl der Eingabe als auch der Ausgabe) stellen alle vier Hashfunktionen keine Anfor-
derungen aufler der offensichtlich notwendigen, daf die Ausgabe nicht langer sein darf als die Eingabe.

Die universelle Quasi-Hashfunktion in Lemma 3.10 verlangt unter den vieren am wenigsten initialen Zufall,
namlich n +m — 1 Symbole (wobei n und m die Eingabe- bzw. Ausgabeblocklinge seien).

Fiir Satz 4.8 werden wir Familien von Hashfunktionen brauchen, welche zwar den gleichen Definitionsbereich
haben, aber verschiedene Wertebereiche. Genauer benétigen wir universelle Quasi-Hashfunktionen

B Mp x " — X™ (m <mn),

wobei X und Mg bei all diesen Hashfunktionen gleich sein soll. Bei den am Anfang dieses Abschnitts vorge-
stellten jedoch hingt Mg von m ab. Abhilfe schafft das folgende Lemma:

Lemma 3.11: Vergrofierung des initialen Zufalls einer Hashfunktion

Ist h: Myry x Mx — My eine universelle Quasi-Hashfunktion, und f : Mg — My (g) eine Abbildung mit
#f7r) =#f71(r") fiir alle r,r' € M}, dann ist auch

hf: MrxMx —> MX
r,x — h(f(r),z),

eine universelle Quasi-Hashfunktion. Ist A eine universelle Hashfunktion, so ist hy auch eine universelle
Hashfunktion. O

Zum Beweis siehe Abschnitt A.3.8, Seite 61.

Damit kann eine Familie von Quellen mit den gewiinschten Eigenschaften z. B. wie folgt konstruiert werden:
Seien h!, : Fmtn=l x Fn — F™ (m < n) wie in Lemma 3.10 (Anwendung von Toeplitz-Matrizen). Dann
existieren nach vorstehendem Lemma universelle Quasi-Hashfunktionen h,, : F2?~! x F? — F™, wobei fiir
f 2t 5 Fntmel jede surjektive lineare Abbildung gewihlt werden kann (z. B. einfach (rq,...,r9n_1) =

(Tl, e ;Tn+m71))-
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Kapitel 4

Adaptive Extraktion

In diesem Kapitel werden wir aufzeigen, wie man auch aus Quellen, die keine garantierte min-Entropie haben,
Zufall extrahieren kann. Dazu werden wir zunéchst ein Qualitdtsmak fiir von der Quelle ausgegebene Daten
definieren und dann darauf basierend ein Extraktionsverfahren vorstellen.

4.1 Symbolgewichtung

Die folgende Definition dient dazu, einer Folge von Symbolen ein gewisses Qualitdtsmals zuzuordnen, um spéter
zu entscheiden, in welchem Mafe diese in die weitere Verarbeitung mit einfliefsen soll.

Definition 4.1: Symbolgewichtung
Eine Symbolgewichtung iber einem Alphabet Y. ist eine partielle Funktion

n: T*xT* —  Rso,
a,T — n(a;z).

Die Symbolgewichtung n°* der Familie X von Quellen ist definiert durch

7Y (a; ) := — log sup PXjg41- - Xjaa| =7 | X1... X}g) = @),
Xex

wobei 7% eine Symbolgewichtung iiber ¥y ist. Dabei sei ¥ (a;z) := L, falls P(X; .. Xja) = a) = 0 fiir
alle X € X. a

Die Symbolgewichtung liefert also eine obere Schranke fiir die Wahrscheinlichkeit einer Symbolfolge, gegeben
ihren Préfix. Da in die Definition der negative Logarithmus dieser Schranke eingegangen ist, erhalten wir fiir
seltenere Symbolfolgen hohere Werte. Unmdgliche Symbolfolgen erhalten das Gewicht oo.

Wir wollen nun einige Ungleichungen fiir Symbolgewichtungen aufzeigen, die uns das Berechnen derselben
erleichtern sollen:

Lemma 4.2: Komposition von Symbolgewichtungen

Es sei X' eine Familie von Quellen und «, 1, ...,z, € ¥%. Dann ist

nX(a;ml R Z nx(aml C Ty 15Ty).
v=1
Ist eine Seite dieser Ungleichung definiert (d.h. nicht L), so ist es auch die andere. O

Beweis siehe Abschnitt A.4.1, Seite 61.

Dieses Lemma ermdoglicht die sukzessive Berechnung einer unteren Schranke fiir eine Symbolgewichtung 7,
wenn nur z.B. die Einschrinkung n|s« xx bekannt ist.

Leider gilt in Lemma 4.2 i. a. keine Gleichheit, wie folgendes einfache Beispiel zeigt: Es sei X' := {X, Y} eine
Familie von Quellen iiber {0,1}, wobei X gleichverteilt auf den endlichen Folgen {00,01} und Y gleichverteilt
auf {00,11} sei. Dann ist n*(X\;0) = —log P(X; = 0) = 0 und 7¥(0;0) = —log P(Y> = 0]Y; = 0) = 0.
Allerdings ist P(X1X> = 00) = P(Y;Y> = 00) = 3, also n*(X;00) = 1 > o (0) + n¥(0;0).7

Im folgenden wollen wir spezielle Klassen von Familien von Quellen definieren, fiir die wir noch weitere Un-
gleichungen fiir die Symbolgewichtung angeben kdnnen.

Definition 4.3: Links-zeitinvariante Familien von Quellen

Zu einer Quelle X sei X" n € Ny definiert durch Xl.(”) = Xitn-

"Man kann auch ein CHMM (siehe Kapitel 5) konstruieren, fiir das in Lemma 4.2 keine Gleichheit gilt. Ein Beispiel mit
7%(X; 00) = 0, n€(00;0) = 0 aber n¢();000) = 1 findet sich in Abschnitt 5.2.7.
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4 ADAPTIVE EXTRAKTION

Eine Familie X von Quellen heiflt links-zeitinvariant, wenn fiir jedes X € X und jedes n € Ny auch
XM e X ist. O

In dieser Definition ist X (™ die Quelle, die aus X entsteht, wenn man die ersten n Symbole weglift. Somit
bedeutet links-zeitinvariant, dafs jede Quelle nach Weglassen eines Prifixes wieder eine Quelle aus der selben
Familie ist.

Definition 4.4: Rechts-zeitinvariante Familien von Quellen
Es sei Y (™ analog zu X (™ in der vorangehenden Definition.

Eine Familie X von Quellen heiflt rechts-zeitinvariant, wenn fiir jedes X € A und jedes n € Ng ein Y € X
existiert mit V(" = X. 0

Diese Definition ist gewissermafien die Umkehrung zur Links-Zeitinvarianz. Hier wird verlangt, daf zu je-
der Quelle ein Préfix (nicht notwendigerweise konstant) angegeben werden kann, so daf durch Voranstellen
desselben wieder eine Quelle aus der selben Familie entsteht.

Definition 4.5: Konditioniert links-zeitinvariante Familien von Quellen
Es sei X(") wie in Definition 4.3.

Eine Familie & von Quellen heiflt konditioniert links-zeitinvariant, wenn fiir jedes X € X', jedes n € Ny
und jedes # € ¥% mit P(X;...X, =) > 0 auch

XM|(X;.. Xp=2)e X
gilt. O
Diese Definition ist &hnlich zu der der Links-Zeitinvarianz. Die konditionierte Links-Zeitinvarianz sagt aus,

daft wenn wir eine Quelle X haben und wissen, welchen Prifix sie ausgegeben hat, die noch folgenden Daten,
konditioniert nach unseren Kenntnissen, dann wieder eine Quelle aus der selben Familie bilden.

In den drei vorangegangenen Definitionen geniigt es, die Bedingungen fiir n = 1 zu priifen. In den Fillen
der Links- und Rechts-Zeitinvarianz ergibt sich dies direkt aus der Definition, fiir den Fall der konditionierten
Links-Zeitinvarianz findet sich der Beweis in Abschnitt A.4.2, Seite 62.

Die drei Definitionen sind alle unabhéngig in dem Sinne, dafs es fiir jede Teilmenge aus den drei Eigen-
schaften eine Familie von Quellen gibt, die genau diese Teilmenge erfiillt. Die acht Beispiele finden sich in
Abschnitt A.4.3, Seite 63.

Gertistet mit diesen neuen Klassifizierungen kénnen wir das folgende Lemma formulieren:

Lemma 4.6: Verschiebung von Symbolgewichtungen

Es sei X' eine Familie von Quellen, ay,as,2 € ¥% und n € Ng.

Ist X konditioniert links-zeitinvariant, so gilt, falls % (o as; x) # L:
¥ (ag; ) < nY(aras; ). (5)
Ist X' rechts-zeitinvariant, so gilt fiir n% (ao;x) # L:

™ (az;x) > min 7" (aay; ). (6)
aeXl,

Ist X rechts-zeitinvariant und konditioniert links-zeitinvariant, so gilt in (6) sogar Gleichheit. O

Beweis siehe Abschnitt A.4.4, Seite 64.

Dieses Lemma ermdglicht es uns, bei konditioniert links-zeitinvarianten Quellen nur eine beschrinkte An-
zahl von vorangegangenen Symbolen in die Berechnung der Gewichtung einfliefsen zu lassen (5). Bei zusétzlich
rechts-zeitinvarianten Quellen sagt (6) aus, daf diese Abschéitzung optimal ist.
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4.2 Extraktion

Dank der Lemmata aus diesem Abschnitt kénnen wir folgende Methode verwenden, um die Berechnung der
Symbolgewichtungen grofier Datenmengen aus links-zeitinvarianten Quellen zu beschleunigen. In der Vorverar-
beitung wird n?¥ fiir Argumente aus % x [Ji~, £% tabelliert (n,m € N), dann kann mit Hilfe der Lemmata 4.2
und 4.6 aus dieser Tabelle die Symbolgewichtung n* (a;z) mit |a| > n nach unten abgeschiitzt werden durch

an(on(aml C Ty 1); Ty)s
v=1

wobei 7 ...z, eine beliebige Zerlegung von x mit |z,| < m sei und o,(w) die letzten n Symbole von w
bezeichne.

4.2 Extraktion

Wir haben im vorangegangenen Abschnitt ein Mafl aufgestellt, welches angibt, wie zufillig eine gegebene
Ausgabe der Quelle ist. Es bietet sich nun an, dies mit den Ergebnissen aus Kapitel 3 zu kombinieren. Hierzu
zerlegen wir die Ausgabe der Quelle in Blocke, gewichten die Blocke und wenden dann das Leftover Hash
Lemma (Satz 3.6) auf jeden Block an. Hierbei setzen wir die Ausgabeblocklinge abhingig von der Gewichtung
des jeweiligen Block, denn das Leftover Hash Lemma sagt uns, daf wir bei Blocken ,,grofserer Zufalligkeit®
einen grofseren Ausgabeblock erhalten. Dieses Extraktionsverfahren formalisieren wir wie folgt:

Definition 4.7: Adaptiver Hash-Extraktor EZ;”

Es sei n eine Symbolgewichtung, n € N, m : R>oU {oo} = Ny, weiter Mg, ¥ und X,y endliche, nichtleere
Mengen, und h eine Familie von Funktionen

hi s Mg x ™ — XM, (m € M :=m(Rx>o U {o0}) \ {0}).

Dann ist der adaptive Hash-FExtraktor

—=n,m * N * N
= srusN — o ush

durch folgende Konstruktion definiert:
Sei X € ¥*UXN und R € Mg, sowie

B, - Xi—tyng1 - Xin, falls |[X] > in,
YL, sonst,

hm(n(Bl...Bi,l;Bi))(RaBi)a falls B, ;é J_, ’I](Bl .- -Bi—l; B,) ;é 1
X; = und m(n(By ...Bi_1; B;)) > 0,

A, sonst,

und schliefflich o
EZ:,T(R,X) =X Xs... O

Die verschiedenen Komponenten dieser Konstruktion kénnen wir folgt interpretiert werden:

Die Zufallsvariable B; gibt den i-ten Quelldatenblock der Linge n an. Dieser wird gewichtet, und dann wird
eine universelle Quasi-Hashfunktion (geméfs Leftover Hash Lemma, mit initialem Zufall R) auf B; angewandt,
wobei die Ausgabeldnge mittels der Abbildung m aus der Gewichtung errechnet wird; das Ergebnis findet
sich dann in der Variablen X;. Das Endresultat (die extrahierte Zufallsfolge) ergibt sich schlieflich durch
Konkatenation der einzelnen Ergebnisblocke.

Um oben beschriebenes Extraktionsverfahren einsetzen zu koénnen, miissen wir wissen, von welcher Qualitét

der resultierende Zufall ist. Dies kldrt der folgende Satz:

Satz 4.8: Adaptive Extraktion

Es sei X eine Familie von Quellen iiber ¥, < n¥ eine Symbolgewichtung iiber ¥, I € N, n € N,
m : R>o U {oo} = {0,...,n}, weiter Mg, Mg, ¥ou endliche, nichtleere Mengen und h eine Familie von
universellen Quasi-Hashfunktionen

hi : Mg x X" — ¥7 (m € M :=m(R>oU {oo}) \ {0}).
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4 ADAPTIVE EXTRAKTION

Auferdem sei R eine auf Mg gleichverteilte und von X, S unabhéngige Zufallsvariable, S eine Zufallsva-
riable mit Werten in Mg und X € X.

Seien ferner

X :=="M(R, Xy ... X))
und
loge := % kzil{rio (m(k)log #Zout — k) + log(l + 1) + log|l/n] + log #Ms + 5 log #M — 1 (7)
m(k)#0
Dann ist P(|X| <) =1, und X ist e-zufillig unter Kenntnis von R, S, | X]|. O

Beweis siehe Abschnitt A.4.5, Seite 65.

Gegeniiber Definition 4.7 ist noch der Parameter [ hinzugekommen, welcher angibt, wieviele Symbole
maximal der Ursprungsquelle entnommen werden.

Zu beachten ist hier, daff selbst bei Kenntnis des initialen Zufalls R die extrahierte Folge noch obiger
Qualitdtsabschitzung gentigt.

Auferdem erlaubt dieser Satz auch noch, einen beliebigen Seitenkanal S anzunehmen, vorausgesetzt dieser
nimmt nur ein endliches Repertoire von Werten an,® dann sinkt die Qualitéit nur logarithmisch in der Anzahl
der moglichen Werte.

Intuitiv 148t sich obiger Satz etwa wie folgt begriinden: Die Symbolgewichtung 7 := n(Bj ... B;_1; B;) eines
Blocks 1aft eine Abschiatzung der min-Entropie dieses Blocks zu. Von dieser min-Entropie ist das Wissen,
daf uns der Seitenkanal S vermittelt, (hochstens log #Mg) abzuziehen. Wir kommen auf eine min-Entropie
von O(n — log#Mg). Da auch die Lange der Ausgabefolge einen Seitenkanal darstellt, welcher [ + 1 Werte
annehmen kann (min. Linge 0, max. Linge 1), verringert sich die min-Entropie noch weiter um log(l + 1).
Durch Anwendung des Leftover Hash Lemmas erhalten wir dann eine Qualitét (d.h. —loge) proportional zur
min-Entropie abziiglich der Ausgabeblocklange (in Bit, daher miissen wir noch mit log #X,,¢ multiplizieren),
also O(—mlog #Xout + k — log(l + 1) — log #Mgs), wobei k die Symbolgewichtung darstellt. Da wir vom
schlimmsten Fall ausgehen miissen, ist hier das Infimum {iber alle Symbolgewichtungen zu nehmen. Da wir
maximal [I/n] Blocke aus der Ursprungquelle erhalten, ist der statistische Abstand e iiber ebensoviele Blécke
zu summieren, also die Qualitdt noch um log|l/n] zu senken. Damit sind alle wesentlichen Terme aus (7)
erklart (denn #M < n ist klein im Vergleich zu den anderen Grofen).

Da diese Abschitzung der Qualitdt ob der vielen Faktoren etwas uniibersichtlich ist, soll das folgende Korollar
helfen:

Korollar 4.9: Adaptive Extraktion

Es sei X eine Familie von Quellen iiber ¥, 7 < 7% eine Symbolgewichtung iiber ¥, 1 € N, n € N, € > 0,
weiter Mg, Mg endliche, nichtleere Mengen und h eine Familie von universellen Quasi-Hashfunktionen
hi : Mp x £ — {0,1}™ (= 1,...,n). Weiter sei R eine auf My gleichverteilte Zufallsvariable, S eine
Zufallsvariable mit Werten in Mg und X € X.

Wir setzen
c:= —2loge +4logl —logn + 2log #Msg,
07 (k —-cC S 0)7
m(k) =14 [k—c), (0<k-c<n),
n, (k—c>n),
X :=Z"(R, X ... X)),
dann ist X e-zufillig unter Kenntnis von R, S, |X]|. O

Der Beweis findet sich in Abschnitt A.4.6, Seite 68.

8 Achtung: Hiermit ist nicht eine Quelle mit endlichem Alphabet gemeint, sondern eine Zufallsvariable, die nur endlich viele
Werte annimmt.
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4.2 Extraktion

Gewappnet mit diesem Korollar kann man nun wie folgt vorgehen, um aus einer gegebenen Quelle Zufall
zu extrahieren.

e Zunichst modelliert man eine Familie von Quellen, von der man postuliert, daft die vorliegende Quelle
dazugehort. Siehe auch Kapitel 5 fiir konkretere Modellierungsmethoden.

e Dann bestimmt man eine untere Abschitzung fiir die Symbolgewichtung dieser Familie.

e Als néchstes schitzt man die Lebensdauer der Quelle grofziigig ab. Liegt z. B. eine bindre Quelle vor,
die 20 MBit/s an Daten liefert, und nehmen wir an, daf diese maximal 1000 Jahre in Betrieb sein wird,
so kénnen wir folgern, daf die Quelle nicht mehr als [ := 250 Symbole ausgeben wird.

e Dann wihlen wir eine Blockldnge n. Grofere Blockldngen liefern laut Korollar eine hohere Extraktions-
rate, allerdings nimmt i. a. der Aufwand fiir die Berechnung der Hashfunktionen zu. Es gilt also abzuwé-
gen. Um dies zu erleichtern, sei folgende Heuristik vorgeschlagen: Zunéchst schétzt man experimentell
den Erwartungswert R von n(B; ...B;_1;B;)/n (durch generieren von Testdaten und Berechnung von
7). Bei realen Quellen wird dieser Erwartungswert fiir hinreichend grofe n tiblicherweise nicht stark von
1 oder n abhéngen. Dann weiff man, dafs die Extraktionsrate laut obigem Korollar ungeféhr

Wl

Em(n(Bi...Bi—1;B;))  nR—cn nR—,(—QlogE+4logl+2log#M5)

n n n

sein wird. Dies konvergiert fiir n — oo von unten gegen R, man wahle nun n so grofs, dak die Rate
moglichst nahe an R kommt, ohne dabei n allzu grof werden zu lassen. (Mit n := 10¢/R erreicht man
beispielsweise bereits 90 % der maximalen Rate R.)

Die Tatsache, daf die Wahl von n nur von heuristischen Uberlegungen abhiingt, ist nicht weiter kri-
tisch, da dies nur einen Einflufs auf die Effizienz der Extraktion hat, nicht aber auf die Qualitit des
resultierenden Zufalls.

e Zuletzt wihlen wir eine Familie von Hashfunktionen. Liegt eine binéire Quelle vor, bieten sich wegen der
geringen Menge an bendétigtem initialen Zufall die in Lemma 3.10 untersuchten Toeplitz-Transformatio-
nen an. Mit Lemma 3.11 kreieren wir eine Familie von universellen Quasi-Hashfunktionen mit 2n — 1 Bit
initialem Zufall.

o Wir extrahieren X gemifs Korollar 4.9.

In vorstehenden Uberlegungen haben wir gesehen, daf die folgende Kenngrofe von Interesse ist:

Definition 4.10: Rate

Sei i eine Symbolgewichtung iiber einem Alphabet X. Die Rate R(X,n) von X € X mit n ist definiert
durch
Lt/n]

n—0o0 [—00 <
=1

Die Rate R(X,n) von X mit n ist dann

R(X,n) := )grelfx R(X,n),

die Rate R(X) von X
R(X) := R(X,n"),
und die Rate R(X,X) von X in X
R(X,X) := R(X,n"). O

Man beachte, daft die Rate nur ein erster Richtwert ist, wie gut sich Zufall aus einer Familie von Quellen
extrahieren l&fst, es konnte z.B. die Rate nur fiir n &~ [ erreicht werden, was bedeuten wiirde, daft mehr
initialer Zufall bendtigt wird, als letztlich extrahiert wird.

Fiir den Spezialfall einelementiger Familien von Quellen kénnen wir die Rate direkt angeben:
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4 ADAPTIVE EXTRAKTION

Lemma 4.11: Rate einelementiger Quellen
Sei X eine Quelle iiber ¥ und X := {X}. Dann ist

||
(o x) = an(am CTy—1; Ty) (,x € X7) (8)
v=1
und, falls H(X) existiert,
R(X) = R(X,X) = H(X). O

Zum Beweis siche Abschnitt A.4.7, Seite 69.
Nebenbei erkennen wir hieran auch noch

R(X,X) < R(X,{X})2' H(X)

fiir beliebige Familien X' von Quellen.

4.3 Beispiele

Im folgenden wollen wir einige Beispiele fiir Symbolgewichtungen verschiedener Familien von Quellen vorstellen.

4.3.1 Quelle mit festem Bias

Es seien X; unabhéngig identisch verteilt auf ¥ := {0,1} mit P(X; = 1) =+, v € [0,1]. Es sei dann X := {X}.
Es ist

P(Xi..Xj=2|X;...Xi 1 =a) =101 )@ (1<i<j, ae¥™l zexpimitly
also folgt direkt aus Definition 4.1:
*(

N (@) = —wi(x)logy — wo(z) log(1l — ) (a,z € X7).

Daraus ergibt sich direkt die Rate
R(X) = R(X, X) = —ylogy — (1 —y)log(1 — ) = H(X),

in Ubereinstimmung mit Lemma 4.11.

4.3.2 Quelle abschnittsweise garantierter min-Entropie

Es sei X nichtleer und endlich, £ € R>o, n € N, k < nlog#2X. Dann sei A die Familie aller Quellen X mit
Hoo(Xi.. . Xigna|X1... X1 =) > k (i € N,a € ©%).

Dann ist nach der Definition der min-Entropie (Definition 2.4) und der Symbolgewichtung (Definition 4.1)
sofort

n(az) >k (zeX),

und mit Lemma 4.2 ergibt sich schliefllich

WWmmsz%J (v es).

Direkt aus Definition 4.10 ergibt sich dann fiir jedes X € X

R(X,0)= "

welches die minimale min-Entropie pro Symbol ist.
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4.3 Beispiele

4.3.3 Von-Neumann-Quelle

In [vN51] wurde die Familie von Quellen eingefiihrt, die aus allen unabhingig identisch verteilten biniren
Quellen besteht. Wir wollen diese Familie ein wenig verallgemeinern und mit unseren Mittel untersuchen.

Sei ¥ endlich und nichtleer, sowie X" die Familie aller unabhéngig identisch verteilten Quellen iiber ¥. Fiir
jede Quelle X € X' gilt dann:

P(X;.. . Xj=z|X1.. . Xiq=a)= [[ P(X1=0)"  (1<i<jae ™ zex/7i),

oex
damit ist
7Y (e; ) = — sup Z wo (7) log po & — | Z wo () log wo () (a,z € ¥*\ {\}),
PERY sey LIS ] 2]

die Gleichheit (x) wird in Abschnitt A.4.8, Seite 70 gezeigt.
Da ‘;—‘nx (a; ) fiir unabhingig identisch verteilte Zufallsfolgen ein asymptotisch erwartungstreuer Schitzer

fiir die Entropie ist (siehe Abschnitt A.4.9, Seite 71), gilt
R(X,X) = H(X),

aber
R(X) =0.

Man beachte, daf man, wenn man 1 symbolweise berechnet und mit Lemma 4.2 als

i
n(e; z1...2;) == an(aml C Ty )
v=1

zusammensetzt, 7 = 0 erhélt.
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Kapitel 5

CHMM-Quellen

5.1 Modellierung

In diesem Kapitel wollen wir eine spezielle Klasse von Familien von Quellen untersuchen, die CHMM-Quellen.
Hierzu rufen wir uns zunéchst die Funktionsweise eines HMM (hidden Markov model) ins Gedéchtnis (eine
kurze Einfiihrung in die Theorie der HMM findet sich z. B. in [Rab90]). Man betrachte das folgende Beispiel:?

01

ouiiiiso

:0

=

~lw
o

I
—_

1
1

Hier ist ein HMM mit zwei Zustinden qq, ¢ dargestellt. Aus jedem dieser Zustédnde geht das HMM mit
Wahrscheinlichkeit i in den anderen Zustand iiber, ansonsten verbleibt es im vorhergehenden Zustand. Bei
jedem Ubergang zu g gibt es 0 aus, bei jedem zu q; wird 1 emittiert.'®

Durch dieses HMM wird nun eine Quelle beschrieben, bei welcher nur mit einer Wahrscheinlichkeit von i
die Ausgabe wechselt, welche also eine starke Tendenz zu gleichbleibenden Ausgabesequenzen hat.

Wenngleich man mit HMM viele Quellen beschreiben kann, haben sie fiir unsere Anwendung zwei schwer-

wiegende Méngel:

e Ein HMM beschreibt nur eine einzige Quelle,'" wollen wir eine Familie von Quellen beschreiben, miis-
sen wir eine Familie von HMM angeben. Auch dann ist die Quelle von ihrem ersten Symbol an auf
gewisse Ubergangswahrscheinlichkeiten festgelegt. Es ist dann nicht mdglich, dak eine Quelle mit einer
Ubergangsverteilung beginnt und spiiter eine andere annimmt.

e Chaotische Prozesse lassen sich — wenn iiberhaupt — nur mit gigantischen HMM modellieren. Liegt z. B.
eine Quelle vor, die anhand eines chaotischen oder zumindest komplexen Prozesses aus der bisherigen
Ausgabe entscheidet, ob eine Ubergangswahrscheinlichkeit p; oder p, vorliegt, dann kann die Quelle nicht
mehr modelliert werden, wenn sich dieser Entscheidungsprozess einer Modellierung widersetzt, obwohl
wir iiber die Quelle immerhin eine sehr klare Aussage treffen kénnen: Die besagte Ubergangswahrschein-
lichkeit wird immer p; oder py sein.

Um dem abzuhelfen, fithren wir kontrollierte HMM ein, kurz CHMM. Diese erlauben es, eine (bzgl. der
Rechenkapazitit) beliebig méchtige Instanz (den Quellen-Adversary, kurz Adversary) anzunehmen, welche vor
jeder Ausgabe die Ubergangsverteilungen neu withlen darf. Damit aber nicht einfach die Familie aller Quellen
dabei herauskommt, ist die Wahl der Verteilungen fiir jeden Zustand auf eine gewisse Teilmenge aller méglichen
beschriinkt. Obiges HMM kénnen wir z. B. wie folgt zu einem CHMM erweitern:'?

[3:5]:1

J:0 \/ 3,

[+

—
o=
i
~lw
i
—_

]:0

M

9Dateiname hmmexample.chmm (siehe Abschnitt B.4).

10Man beachte, daf die im obigen Graphen verwandte Notation es auch zulift, beim Ubergang zu einem Zustand abhingig
davon, iiber welchen Pfeil die Transition ging, die Verteilung iiber die moglichen Ausgaben zu variieren. Diese Mo6glichkeit ist bei
HMM nicht gegeben. Wir haben uns aber hier fiir diese Notation entschieden, weil damit die HMM klar als Spezialfall der weiter
unten eingefithrten CHMM erkennbar sind.

H Genaugenommen schon mehrere, wenn wir keinen Startzustand festlegen, aber meist gehen unsere Anspriiche an die Gréfe
der Familie dariiber hinaus.

12Dateiname chmmexample.chmm (siehe Abschnitt B.4).
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5.1 Modellierung

Dieses CHMM kann in jedem Schritt eine Wahrscheinlichkeit fiir das Verweilen im aktuellen Zustand aus
dem Interval [%, %] frei withlen.'® Wihlt der Adversary %, so entspricht das CHMM dem HMM oben. Wihlt er
%, so verhilt sich die Quelle wie eine perfekt zuféllige. Jede Abstufung dazwischen kann angenommen werden,
das Verhalten kann nach jedem Ausgabesymbol neu bestimmt werden.

Diagramme der obigen Form sind nun wie folgt zu lesen: Ist das CHMM in Zustand ¢, so betrachte man
die von ¢ abgehenden Pfeile. Jeder Pfeil ist mit einer Wahrscheinlichkeitsmenge und einem Ausgabesym-
bol versehen. (Ist ein Pfeil mit mehreren solchen Paaren versehen, so ist er als mehrere Pfeile mit gleichem
Ursprung und gleichem Ziel zu verstehen.) Vor der Bestimmung der nédchsten Ausgabe kann der Adversary
eine Wahrscheinlichkeitsverteilung auf den betrachteten Pfeilen festlegen, mit der Einschrinkung, dafs jeder
Pfeil eine Wahrscheinlichkeit zugeteilt bekommt, die innerhalb der ihm zugeordneten Menge liegt. Dann wird
entsprechend der Verteilung ein Pfeil gewihlt, und ihm entsprechend eine Ausgabe und ein neuer Zustand.

Man beachte, daf diese Darstellungsform noch nicht volle Allgemeinheit hat. Nehmen wir z. B. ein CHMM,
welches folgendes Verhalten zeigt: Aus einem Zustand kann es mit einer frei wihlbaren Wahrscheinlichkeit in
den anderen Zustand wechseln. Tut es dies, ist die Ausgabe mit doppelt so grofser Wahrscheinlichkeit 0 wie 1.
Verbleibt es im aktuellen Zustand, so ist die Ausgabe 0 fiir go und 1 fiir ¢;. Dieses CHMM 1aft sich nicht
nach unserem Schema darstellen, man bedient sich dann folgender Syntax: Anstelle von Mengen kénnen an
manche Pfeile auch Variablen geschrieben werden. Dann annotiert man das CHMM mit beliebig gearteten
Bedingungen (z. B. Gleichungen) in diesen Variablen, die vom Adversary wiahlbaren Verteilungen miissen dann
diese Bedingungen erfiillen. Eben beschriebenes Beispiel sieht dann wie folgt aus:'4

[0,1]:0 0,1]: 1

pO:Oapl:]-

\/

POiO,Plil

Po = 2p1

Man sollte noch beachten, daf nicht jedes Diagramm ein CHMM darstellt, denn wenn fiir einen Zustand keine
vom Adversary wihlbare Verteilung existiert (z. B. weil die moglichen Wahrscheinlichkeiten sich in keinem Fall
zu 1 addieren, oder weil die angefiigten Gleichungen keine Losung haben), dann liegt kein CHMM vor.

Formal besteht ein CHMM natiirlich nicht aus Pfeilen und Annotationen, sondern geniigt einfach der folgenden

Definition:

Definition 5.1: CHMM
Ein CHMM C (kontrolliertes HMM, controlled hidden Markov model) besteht aus einem Alphabet Y¢, einer
endlichen Menge Q)¢ von Zustdnden und einer Familie von Transitionsbereichen Cq (¢ € Qc¢) mit
C, CRYXQe ¢, #0. O
Diese Definition entspricht wie folgt den oben erlduterten Objekten:

e Die Menge der Zustinde Q)¢ wurde dargestellt durch Kreise mit den Namen der Zusténde.

e Weiter ist ¢ die Menge der Symbole, welche bei einem Ubergang ausgegeben werden kénnen. Sie standen
an den Pfeilen nach dem Doppelpunkt.

e Fiir einen gegebenen Zustand ¢ ist X¢ x Q¢ also die Menge der von ¢ ausgehenden Pfeile, da ein solcher
aus einem Ursprung (¢), einem Ziel (€ Q¢) und einer Ausgabe (€ ¥¢) besteht.!® (Im Diagramm sind es
meist weniger Pfeile, da die mit verschwindender Wahrscheinlichkeit i. a. nicht dargestellt werden.)

e Fiir die vom Zustand ¢ ausgehenden Pfeile ist C, die Menge der vom Adversary wéihlbaren Verteilungen.
Hierbei ist eine Verteilung p dargestellt als Tupel in IR?CXQC, es stellt dann p, , die Wahrscheinlichkeit
fiir einen Ubergang nach ¢’ mit Ausgabe z dar.

13Die Wahrscheinlichkeit fiir den Ubergang in den anderen Zustand darf aus [%, %] gewdhlt werden, da aber die Gesamtwahr-
scheinlichkeit 1 betragen muf, ist diese Ubergangswahrscheinlichkeit gerade 1 abziiglich der Verweilwahrscheinlichkeit.

! Dateiname: notinterval.chmm (siehe Abschnitt B.4).

15Die Wahrscheinlichkeitsmenge, die im Diagramm am Pfeil notiert ist, ist strenggenommen nicht Teil des Pfeils, da sich die
Verteilungen immer auf mehrere Pfeile beziehen.
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5 CHMM-QUELLEN

Wir haben oben von einer Instanz gesprochen, die die Auswahl der Ubergangsverteilung vornimmt, dem
Adversary. Um diesen Adversary A moglichst allgemein zu gestalten, modellieren wir ihn als Funktion A,
welche die folgenden Eingaben bekommt:

e Den aktuellen Zeitpunkt, d. h. eine laufende Nummer ¢ beginnend bei 1 fiir das erste Symbol.

Ein unbeschrinktes Zufallsband (r,) von reellen Zahlen im Bereich 0 bis 1. Dieses Zufallsband wird bei
sukzessiven Aufrufen des Adversaries nicht neu initialisiert.

Den vorangegangenen Zustand g. Der Adversary darf nur Verteilungen aus C, wéhlen.

Alle vorangegangenen Zustéinde (qo, ..., ;).

Alle bislang ausgegebenen Symbole (x1, ..., x;).

Man beachte, dafs die Zustdnde bei Index 0 beginnen, die ausgegebenen Symbole hingegen bei 1. Dies liegt
darin begriindet, dafs fiir die Ausgabe des ersten Symbols zunéichst ein initialer Zustand festgelegt werden mufk.
Hier lassen wir dem Adversary freie Wahl iiber die Verteilung der Anfangszustinde, modelliert als Funktion
A* iiber dem Zufallsband mit Ausgaben aus ganz R%¢.

Ein interner Zustand des Adversaries, welcher zwischen den Aufrufen gespeichert wird, wiirde keine grofsere
Allgemeinheit bewirken, da der Adversary (bei Kenntnis des Zufallsbands) deterministisch ist, und somit
zu einem spéiteren Zeitpunkt alle von fritheren Aufrufen generierten Informationen neu errechnen kann (der
Adversary ist in keiner Weise bzgl. der Rechenleistung beschrénkt).

Formal fiigt sich dies zu folgendem Konstrukt:

Definition 5.2: CHMM-Adversary
Ein CHMM-Adversary A zu einem CHMM C besteht aus zwei mefbaren Abbildungen

A" [0, N0 — R
und
AN x[0,1)N x Q¢ x Qf x £f —s RTe*Ce
mit
A(Za (Tl/)a q, (qy)a (O',,)) € Cq
fir alle i € N, (r,) € [0,1)N, g € Qc, (¢,) € Q}, (0,) € T5.
Die Menge aller Adversaries zu C nennen wir Adve. O

Wir haben oben in Begriffen von Zustdnden und Pfeilen zwischen denselben beschrieben, wie aus einem CHMM
und einem Adversary eine Quelle entsteht. Dies wird nun formal definiert:

Definition 5.3: CHMM-Quelle
Sei C ein CHMM und A € Adve. Dann ist die CHMM-Quelle X* durch den folgenden Zufallsprozef
definiert:

Es seien R und R' unabhingige, auf [0,1)Ne gleichverteilte Zufallsvariablen. Wir nehmen auf Q¢ und
Y X Q¢ eine beliebige aber feste Halbordnung an.

Setze dann
TA .= A*(R))
und
Q=g = Y (TN, < R < Y (T, 9)
q'€Qc 7' €Qc
q'<q q'<q

Weiter seien fiir i € N, x € ¥¢ und ¢ € Q¢:
TA = A(iaRla ;’A—lv (Qéa Sty Qf—l): (XiAv ot 7X1‘A—1))

(3

und
(XzA:Q;‘) = (z,9) D Z (TiA)x’,q’ < R < Z (TiA)x’,q" (10)
(z',q')eTexQe (2",¢")ETe xQc
(«',¢")<(z,9) (¢',¢")<(z,q)
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5.2 Beispiele

Eine Quelle X heift C-Quelle, wenn X fiir ein A € Adve die gleiche Verteilung wie X4 hat.

Die Familie aller C-Quellen schreiben wir X¢, und die Symbolgewichtung n¢ zu C ist durch n¢ := an
definiert.

Eine Quelle X heifst CHMM-Quelle, wenn ein CHMM C existiert, so daft X eine C-Quelle ist. O

In dieser Definition haben die verschiedenen Zufallsvariablen folgende Interpretation:
e Das Zufallsband des Adversaries wird dargestellt durch die Folge R'.

e Fiir jeden Zeitpunkt 4 stellt Q7' den aktuellen Zustand dar (mit Q7' als initialem Zustand), und X;* das
beim Ubergang von Q7' | nach Q# ausgegebene Symbol.

e Die Zufallsvariable T/ stellt die vom Adversary ausgewihlte Verteilung fiir (Q:, X7*) dar.
e Die Zufallsvariable T2 stellt die vom Adversary ausgewihlte Verteilung des Anfangszustands dar.

e Die Zufallsvariablen R; werden mittels der Gleichungen (9) und (10) verwandt, damit Qg bzw. (X7, Q%)

auch die vom Adversary verlangte Verteilung bekommen (fiir festes T2 bzw. T/).

Da fiir verschiedene Adversaries ein CHMM C verschiedene Quellen erzeugt, definiert ein CHMM in natiirlicher
Weise eine Familie von Quellen X°.

Damit wir von CHMM erzeugte Familien von Quellen besser in die Begrifflichkeiten aus Abschnitt 4.1 einordnen
koénnen, werde noch das folgende Lemma prisentiert:

Lemma 5.4: Zeitinvarianz von CHMM-Familien
Sei C ein CHMM. Dann ist X€ links-zeitinvariant und konditioniert links-zeitinvariant. O

Beweis siehe Abschnitt A.5.1, Seite 72.

Man beachte aber, daf X€ i.a. nicht rechts-zeitinvariant ist. Ein Gegenbeispiel wird in Abschnitt A.5.2,
Seite 76 gegeben.

Intuitiv begriinden wir das Lemma dadurch, daf — im Falle der Links-Zeitinvarianz — ein Adversary, der
die verschobene Folge X (") (Notation wie in Definition 4.3) erzeugen will, einfach den Adversary der Ur-
sprungsfolge simuliert, die Verteilung von Q(()") der von Q,, entsprechend wihlt, und danach die Ubergangs-
wahrscheinlichkeiten des simulierten Adversaries iibernimmt. Fiir die konditionierte Links-Zeitinvarianz gilt
entsprechendes, nur muf hier der Simulator noch die durch die Konditionierung des Wahrscheinlichkeitsraums
verdnderte Verteilung des Zufallsbands des simulierten Adversaries beriicksichtigen.

5.2 Beispiele

Im folgenden stellen wir einige CHMM vor, um ein erstes Gefiihl fiir diese Konstrukte zu bekommen. Zusétz-
lich zu diesen einfachen Beispielen findet sich in Abschnitt 8.2.2 noch eine kommentierte Modellierung einer
physikalischen Quelle.

5.2.1 Gleichverteilung

)

Dieses CHMM C modelliert eine auf {0, 1} gleichverteilte Quelle. Da es nur einen einzigen Zustand gibt und
der dazugehorige Transitionsbereich einelementig ist, hat der Adversary keinen Einfluff auf das Verhalten der
Quelle.

Direkt aus der Definition der Symbolgewichtung (Definition 4.1) ergibt sich dann

[N NI

n°(a;z) = |z (@, 2 €{0,1}7).

Dateiname: uniform.chmm (siche Abschnitt B.4).
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5 CHMM-QUELLEN

5.2.2 Uneingeschrinkter Adversary
[0,1]:0,
[0,1]:1

Bei diesem CHMM C kann der Adversary in jedem Schritt die Verteilung der Ausgabe frei wéhlen. Somit ist
XC die Familie aller Quellen iiber {0,1}. Damit ergibt sich wieder direkt aus Definition 4.1

n°(a;z) =0 (a,z € {0,1}%).

Dateiname: all.chmm (siche Abschnitt B.4).

1—7:0,
v:1

Dieses CHMM C beschreibt fiir festes v € [0, 1] eine Quelle, die unabhingig identisch verteilte Symbole erzeugt,
wobei die Ausgabe 1 die Wahrscheinlichkeit v hat. Auch hier hat der Adversary keinen Einfluf auf die Daten.

Fiir v = £ entspricht C dem CHMM aus Abschnitt 5.2.1.

Da eine Teilsequenz z € {0,1}* die Wahrscheinlichkeit 4<1(*)(1 — ,Y)wo(w) hat, unabhéngig von zuvor aus-
gegebenen Symbolen, ist

5.2.3 Quelle mit festem Bias

°(esz) = —wi(z)logy — wi(z)log(l—7) (a,z €{0,1}").

Dateiname (mit v := 0,6): biased.chmm (siche Abschnitt B.4).

@ [0,1]: 0,
[0,7]:1

Dieses CHMM C beschreibt fiir festes v € [0,1] Quellen, bei denen der Adversary jederzeit die Ausgabe einer
0 erzwingen kann, die Ausgabe einer 1 aber nur mit einer Wahrscheinlichkeit von hochstens v verlangen. Es
kann also z. B. (bei geeignetem Adversary) die Folge 000 ... mit beliebig hoher Wahrscheinlichkeit auftreten,
die Folge 111... aber nur mit in der Linge exponentiell fallender (aufer wenn v = 1). Natiirlich kann der
Adversary seine Strategie nach jedem Symbol dndern.

Fiir v = 1 erhalten wir das CHMM aus Abschnitt 5.2.2.

Die Gleichverteilung auf {0, 1} ist genau dann in X¢, wenn v > £.

Es ist

5.2.4 Einseitig beschrinkte Quelle

Uc(a;l’) = —w (113) log’y (Oé,iL' € {07 1}*)7

der Beweis hierzu findet sich in Abschnitt A.5.3, Seite 76.
Dateiname (mit  := 0,6): oneside.chmm (siehe Abschnitt B.4).

5.2.5 Symmetrisch beschrinkte Quelle
@ [0,7] : 0,
[0,7]: 1
Dieses CHMM C beschreibt fiir festes v € [%, 1] Quellen, bei denen der Adversary eine 0 oder 1 jeweils mit
einer Wahrscheinlichkeit von maximal v verlangen kann, jedoch nicht erzwingen.
Die Familie XC entspricht den slightly random sources mit Parameter v aus [SV86].
Ist v = %, so ergibt sich das CHMM aus Abschnitt 5.2.1, fiir v = 1 das aus Abschnitt 5.2.2. Fiir v < % lage
kein CHMM vor.

Es ist
n¢(e; z) = —|z|logy (a,z € {0,1}7),
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5.3 Berechnung der Symbolgewichtung

der Beweis steht in Abschnitt A.5.3, Seite 76.
Dateiname (mit v := 0,6): slightlyrandom.chmm (sieche Abschnitt B.4).

5.2.6 Blockierende Quelle

[0,1]: 0

Dieses CHMM C beschreibt fiir festes v € [0, 1] eine Quelle, bei der der Adversary jederzeit erzwingen kann,
daft das gleiche Symbol wie im vorangegangenen Schritt ausgegeben wird, aber einen Wechsel der Ausgabe
nur mit einer Wahrscheinlichkeit von maximal v anfordern kann. Es sind also z. B. (bei geeignetem Adversary)
die Folgen 000... und 111... mit beliebig hoher Wahrscheinlichkeit moglich, die Folge 010101... aber kann
maximal mit einer in ihrer Liange exponentiell fallender Wahrscheinlichkeit auftreten (sofern v # 1).

Fiir v = 1 erhalten wir ein CHMM mit gleichem Verhalten wie das aus Abschnitt 5.2.2.

Die Gleichverteilung auf {0, 1} ist genau dann in X¢, wenn v > 1.

Es bezeichne k(z) fiir x =z ... 2, € {0,1}* die Anzahl der i € {1,...,n — 1} mit z; # z;+1. Dann ist

(0 2) = {"‘(m) og, - falls =4, (a2 € {0,1"),
—k(qr) logy, sonst,

der Beweis hierzu findet sich in Abschnitt A.5.4, Seite 77.
Dateiname (mit v := 0,6): stalling.chmm (siche Abschnitt B.4).

5.2.7 Ungleichheit in Lemma 4.2
In Lemma 4.2 haben wir gesehen, daft immer
n¥ (@ 2120) > 0™ (e 1) + 0 (awy; 2a)

gilt. Dafs selbst fiir von CHMM erzeugte Familien hier i.a. keine Gleichheit gilt (wie bereits in Fuknote 7,
Seite 21 erwihnt), zeigt das folgende CHMM C:

% : 0 % : 0
® SO —®
\/ \/
1:0 1:1
Hier ist

n°(X;00) =0,
1°(00;0) =0,
7€ (\;000) = 1.

Zum Beweis siehe Abschnitt A.5.5, Seite 78.
Dateiname: nocompose . chmm (sieche Abschnitt B.4).

5.3 Berechnung der Symbolgewichtung

Wie in Kapitel 4 gesehen, brauchen wir, um aus einer Familie von CHMM-Quellen Zufall zu extrahieren, eine
moglichst gute untere Abschétzung der Symbolgewichtung. Wie die folgenden Sétze zeigen, kénnen wir bei
CHMM-Quellen die Symbolgewichtung sogar (im Rahmen der Rechengenauigkeit) exakt bestimmen.
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5 CHMM-QUELLEN

Satz 5.5: Berechnung der Symbolgewichtung von CHMM
Q
Es sei C ein CHMM und z € ¥N. Weiterhin seien die folgenden Abbildungen auf 2%>5 definiert:

N(M) = {h=:pe M\ {0}},
TE) = {( X lpy) 1 €Cy, pe M},

q7'€Qc

wobei Eq: den topologischen Abschluf (im folgenden immer kurz Abschluff genannt) der konvexen Hiille
von Cy bezeichne.

Betrachte folgende Rekursion:

Piy= 7;(/1 (IR?C);

Pij=Ts o N(Pij 1) (1<i<y), (11)
Pij =TS (Pij1) 1<i<j)

Hierbei ist (11) wohldefiniert.

Dann ist
nC(xy .. 215 7 ... ;) = —log max ||p||x (1<i<y). O
pPEP;i,j
Beweis siehe Abschnitt A.5.6, Seite 78.

Diese Rekursionsformel erlaubt es uns, in O(j) Anwendungen von TS und N die Symbolgewichtung
nc(wl .. Ti—15 ;... &) zu bestimmen. Nichtsdestotrotz ist dieser Satz fiir die algorithmische Implementa-
tion noch nicht sehr zweckdienlich, da die einzelnen Schritte auf Mengen von Verteilungen operieren, welche
i.a. unendlich sein werden. Wir miissen deshalb eine endliche und algorithmisch handhabbare Repréisentation
dieser Mengen finden. Wir werden feststellen, daft ein konvexes Erzeugendensystem eine solche Reprisenta-
tion ist, welche zwar die jeweilige Menge nur bis auf konvexe Aquivalenz (s.u.) festlegt, was aber auf das
Endergebnis keinen Einfluf hat, wie Lemma 5.10 zeigen wird.

Zunichst stellen wir fest, dafs die Représentation der Transitionsbereiche eines CHMM durch konvexe Erzeu-
gendensysteme zuléssig ist:

Definition 5.6: Konvexe Aquivalenz

Zwei Teilmengen A, B eines R-Moduls M heifsen konvez-dquivalent, wenn ihre konvexen Hiillen gleich sind.

Zwei CHMM C und C' heiflen konvez-dquivalent, wenn ¢ = ¢, Q¢ = Q¢r, und zusétzlich C, und C,'J fir
jedes q € Q¢ konvex-dquivalent sind.

Die CHMM C und C' heifsen fast konvez-dquivalent, wenn Y¢ = X¢r, Q¢ = Q¢r, und zusétzlich C, und C/
fiir jedes ¢ € Q¢ den gleichen Abschluf der konvexen Hiille haben. O

Lemma 5.7: Konvex-dquivalente CHMM
Sind C und €’ konvex-dquivalente CHMM, so ist X¢ = X¢ . d

Beweis siehe Abschnitt A.5.7, Seite 82.

Die Grundidee des Beweises ist recht einfach. Will ein Adversary eine Verteilung p erzeugen, die in der
konvexen Hiille der erlaubten Verteilungen liegt, so ermittelt er eine Konvexkombination p = ) r;p; und wihlt
mit Wahrscheinlichkeit r; die Verteilung p;.

Dieses Lemma (5.7) wird genaugenommen nicht benétigt, um zu zeigen, daf wir fiir die Berechnung der
Symbolgewichtung die Transitionsbereiche konvex reprisentieren kénnen, die ergibt sich einfacher bereits dar-
aus, dafs in Satz 5.5 nur der Abschlufs der konvexen Hiille von C, verwandt wird, nie C, direkt. Das Lemma
mit seiner stirkeren Aussage sei aber der Vollstédndig halber angegeben (und weil es im Beweis von Satz 5.5
benutzt wird).

Hiermit kénnen wir noch ein paar Klassen von CHMM spezifizieren, die sich fiir eine algorithmische Bearbeitung
besonders eignen.
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5.3 Berechnung der Symbolgewichtung

Definition 5.8: Endlich reprisentierbare CHMM
Ein CHMM C heift endlich, wenn alle C; (¢ € Q¢) endlich sind.

Ein CHMM C heilit endlich reprisentierbar, wenn ein endliches CHMM C(C’ existiert, welches konvex-
dquivalent zu C ist.

Ein CHMM C heifst fast endlich reprasentierbar, wenn ein endliches CHMM C’ existiert, welches fast konvex-
dquivalent zu C ist. O

Der letzte Teil dieser Definition ist klar an die Details von Satz 5.5 angelehnt, da dort von einem CHMM nur
die Abschliisse der konvexen Hiillen verwendet werden. Zu einem fast endlich représentierbaren CHMM gibt
es also insbesondere ein endliches mit gleicher Symbolgewichtung.

Interessant ist noch der folgende Sachverhalt:

Lemma 5.9: Reprisentierbarkeit von durch Diagramme definierten CHMM

Léfkt sich ein CHMM durch ein Diagramm mit beigefiigten Gleichungen und Ungleichungen darstellen (wie
vor Definition 5.1 erldutert), und sind diese Gleichungen und Ungleichungen linear, sowie alle an den Pfeilen
notierten Wahrscheinlichkeitsmengen Intervalle, so ist das CHMM fast endlich représentierbar.

Sind zusétzlich alle an den Pfeilen angegebenen Wahrscheinlichkeitsmengen abgeschlossen, und kommen
in den Gleichungen und Ungleichungen nur die Relationen <, > und = vor (nicht < oder >), so ist das
CHMM sogar endlich reprisentierbar. O

Ein Beweis findet sich in Abschnitt A.5.8, Seite 84.

Zu guter Letzt présentieren wir das Lemma, welches uns eine algorithmische Implementation von Satz 5.5
ermoglicht:

Lemma 5.10: Konvexitidt der Rekursion in Satz 5.5

Sind C und C' zwei fast konvex-dquivalente CHMM, = € ¢, 7, und A wie in Satz 5.5, sowie P, P’ C IR?C
konvex-dquivalent, dann sind

NP)=N(P),  TEP)~TE(P)  und  —logsupllpll = —log sup [Ipl,
peEP peEP’
wobei & konvexe Aquivalenz meine. O

Zum Beweis siehe Abschnitt A.5.9, Seite 84.

Ist also C ein fast endlich représentierbares CHMM, so kann der folgende Algorithmus zur Berechnung von
nC(x1,...,i—1; T;...x;) herangezogen werden (es bedeute ~ konvexe Aquivalenz):

1. Es sei C' ein endliches, zu C fast konvex-aquivalentes CHMM.

2. Setze P := {e; : i € Qc}. (Da die Einheitsvektoren von R?¢ nach Definition von R¥¢ ebendiese Menge
konvex aufspannen, ist P = IR?C 2

3. Fiir v := 1 bis einschlieflich ¢ wiederhole Schritte 4 und 5. (Nach Beendigung der Schleife ist P = P; ;.)

4. Setze P := N'(P) und reduziere P (s.u.). (Dann ist P ~ N (P, _1,,_1) fiiri > 1 bzw. P ~ R = N(RY¢)
fiir ¢ = 1. Dieser Schritt kann fiir ¢ = 1 ohne Anderung der Invarianten auch weggelassen werden.)

5. Setze P := 7;6; (P) und reduziere P. (Dann ist P ~ P, ,.)

6. Fiir v := i+1 bis einschlieklich j wiederhole den folgenden Schritt. (Ist j = 4, so wird die Schleife keinmal
durchlaufen. Nach Beendigung der Schleife ist P ~ P; ;.)

7. Setze P := 7;5 (P) und reduziere P. (Dann ist P = P; ,.)

8. Berechne 7 := —log max,cpl|p|l1. (Dann ist 5 = n¢(z1, ..., Ti—1; @4 ... x}).)
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5 CHMM-QUELLEN

Steht in diesem Algorithmus ,reduziere P, so ist damit gemeint, daf P durch eine (moglichst, aber nicht
notwendig) kleinere Menge mit gleicher konvexer Hiille zu ersetzen ist. Die Reduktion kann auch die Identitit
sein (also weggelassen werden). Algorithmen zur Reduktion behandeln wir in dieser Arbeit nicht.

Bei jeder Operation in diesem Algorithmus darf P auch durch eine Menge ersetzt werden, welche eine Ober-
menge von P als konvexes Erzeugnis hat. Dann sind alle Invarianten entsprechend neu zu formulieren (,die
konvexe Hiille von P ist eine Obermenge der konvexen Hiille von M* statt ,,P ~ M*), und am Ende erhalten
wir n < n¢(21,..., i 1; Ti .. .zj), also eine untere Abschétzung der Symbolgewichtung.

Diese Variante kann u. U. von Nutzen sein, wenn Rundungsfehler keine exakte Berechnung des neuen Inhalts
von P ermdglichen, oder wenn dadurch die Reduktion von P wesentlich besser moglich ist.

Wird die Reduktion weggelassen, so wird dieser Algorithmus offensichtlich schlechtestenfalls eine in ¢ exponen-
tielle Laufzeit haben, da # P exponentiell in i wachsen kann. Bei Ersetzung von P durch jeweils ein minimales
Erzeugendensystem ist uns kein Beispiel dafiir bekannt, dafl #P stirker als polynomiell in ¢ wichst, allerdings
auch kein Gegenbeweis.

Die Auswertung von N ist offenbar linear in 7 bei geeigneter Datenstruktur fiir P, die Auswertung von Twc/
aber hat bei naiver Auswertung der Summenformel eine Laufzeit von

o(#Qe I #¢;).

g€Qc

wahrscheinlich ist es i.a. auch nicht besser moglich.

Zusammenfassend kann iiber die Laufzeit des Algorithmus gesagt werden, dak er nur fiir CHMM mit wenig
Pfeilen geeignet ist, unter diesen aber moglicherweise auch fiir grofe i, j und j — i effizient (bei geeigneter
Reduktionsmethode).
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Kapitel 6

Formale Sicherheit

6.1 Klassische Sicherheitsdefinition

In der Kryptologie ist es wichtig, formal zeigen zu kénnen, daf ein vorliegendes Verfahren sicher ist. Daher sind
im Laufe der Zeit fiir verschiedene Anwendungen verschiedene Sicherheitsbegriffe entworfen worden, die meist
aus Aufzdhlungen verschiedener Eigenschaften bestehen, die spezifisch fiir die jeweilige Anwendung sind. Dies
bedeutet aber, daf beispielsweise der Begriff der Sicherheit von Verschliisselungsverfahren ein ganz anderer ist
als der von Authentifikation. Man kann dies nun fortfithren und Generatoren von Zufallsfolgen, die abbrechen
konnen, als sicher bezeichnen, wenn die von ihnen erzeugten Folgen e-zuféllig sind, wobei ¢, € R in einem
Sicherheitsparameter k hinreichend schnell gegen Null gehe. Eine exakte Formulierung bilden die nachfolgenden
zwei Definitionen.

Definition 6.1: Parametrische Familie von Quellen

Sei B eine Familie von Quellen. Eine parametrische Familie A von Quellen besteht aus einer nichtleeren
Menge Iy, der Indezmenge, und einer Abbildung

X :Nx Iy — B. d

Wir interpretieren diese Definition wie folgt: Der Anwender eines durch X beschriebenen Zufallsgenerators
kann einen Sicherheitsparameter k£ € N frei wihlen; je grofier dieser ist, desto zufélliger soll die Quelle sein.
Der Index i € Iy ist dem Anwender i. a. unbekannt und von ihm nicht beeinflubar. Dann ist die Ausgabe des
Zufallsgenerators die Quelle X'(k,1).

Eine solche Quelle kann einer oder mehreren der folgenden Sicherheitsdefinitionen geniigen:

Definition 6.2: Exponentiell /superpolynomiell /perfekt zufallig

Sei X' eine parametrische Familie von Quellen. Dann heifst X' exponentiell zufdllig, wenn ein ¢ > 1 existiert,
so daf fiir hinreichend groke k € N fiir jedes i € Iy die Quelle X' (k,i) eine (c~*)-zufilllige ist.

Weiter heifit X superpolynomiell zufillig, wenn eine superpolynomielle Funktion f : N — R~q existiert,'
so daf fiir hinreichend grofe k € N fiir jedes i € Ix die Quelle X (k,i) eine (f(k)!)-zufillige ist.

Schlieklich heiflt X' perfekt zufallig, wenn jedes X (k,i) (k € N, i € Iy) perfekt zufillig ist. O

Die superpolynomielle und die exponentielle Variante unterscheiden sich dadurch, wie stark der Sicherheitspa-
rameter in der Qualitét steigt.

Der stirkste dieser Begriffe ist der der perfekten Zufilligkeit, er impliziert die beiden anderen.

Hiernach folgt der der exponentiellen Zufilligkeit, diese impliziert die superpolynomielle. Exponentielle
Zufalligkeit 18t sich mit Satz 4.8 bzw. Korollar 4.9 aus geeigneten Quellen extrahieren.

6.2 Vergleichende Sicherheitsdefinition
Die oben beschriebene Methode, Sicherheitsbegriffe zu finden, hat zwei schwerwiegende Nachteile:

e Fiir jede Klasse von kryptographischen Verfahren muf ein neuer Sicherheitsbegriff entwickelt werden
(wie z. B. der obige).

e In vielen Fillen ist die Liste der geforderten Eigenschaften eine immer weiter wachsende, da im Laufe
der Zeit immer neue Anforderungen an das Verfahren entdeckt werden.

Um diesen Problemen beizukommen, sind in den letzten Jahren allgemeine Sicherheitsmodelle aufgekommen,
die den folgenden Ansatz verfolgen:

e Es wird zunéchst eine ideale Funktionalitat (oder auch trusted party) formuliert, welche als sicher definiert
wird. (Im Falle der Verschliisselung beispielsweise wiirde diese Funktionalitét von einer Partei Daten ent-
gegennehmen und einer anderen diese wieder ausliefern, ohne daf dritte etwas iiber diese Daten erfahren
(aufer vielleicht der Linge). Einer solchen Funktionalitdt kénnen wir grofes Vertrauen entgegenbringen.)

6Das heifit fiir jedes Polynom p gilt fiir hinreichend grofes k, dak f(k) > p(k).
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6 FORMALE SICHERHEIT

e In einem von vornherein definierten Kommunikationsmodell agieren nun eine Umgebung (environment),
ein Adversary, evtl. eine oder mehrere Funktionalitdten und eine Anzahl von Parteien. Alle Teilnehmer
kommunizieren in beliebiger Weise miteinander, mit der Einschrinkung, daf die Umgebung und die
Funktionalitdten nicht miteinander kommunizieren kénnen. Zum Schluft gibt die Umgebung ein Bit aus.

e Soll ein Protokoll (das Real-Life-Protokoll) als sicher gelten, so muf es die folgende Anforderung erfiillen:

Fiir jeden Adversary A (den real life adversary) muf ein Adversary S (der ideal adversary) existieren,
so dafs fiir jede Umgebung Z die Ausgaben der Umgebung in den folgenden beiden Konfigurationen
ungefihr die gleiche Verteilung haben:'”

— Die Umgebung Z zusammen mit dem Real-Life-Adversary A und dem zu iiberpriifenden Protokoll.

— Die Umgebung Z zusammen mit dem idealen Adversary S und der idealen Funktionalitét.

Dieses Verfahren fiihrt zu der folgenden Anforderung an jedes Protokoll, dafs als sicher eingestuft werden
soll: Was auch immer der Real-Life-Adversary bei einer Ausfiihrung des Protokolls erreichen kann, das kann der
ideale Adversary auch mit der idealen Funktionalitdt erreichen. Da wir aber die ideale Funktionalitit a priori
als sicher eingestuft haben, und beim realen Protokoll nichts passieren kann, was nicht auch bei der idealen
Funktionalitidt geschehen konnte, diirfen wir mit Fug und Recht auch das Protokoll als sicher bezeichnen.

Man beachte, daff das Attribut sicher allein hier noch nicht aussagekréftig ist, man muf (sofern dies aus
dem Kontext nicht klar ersichtlich ist) immer mit angeben, welche Funktionalitit sicher realisiert wird.

Wir haben oben die Hauptnachteile der klassischen Sicherheitsdefinitionen aufgezéhlt, darum wollen wir
auch die der vergleichenden (oder simulierenden) Sicherheitsmodelle nicht verschweigen:

e Fiir jede Anwendung mufs eine neue Funktionalitéit definiert werden. Hier muft mit grofer Vorsicht vorge-
gangen werden, denn hat die Funktionalitét Schwachstellen, so erfiillen auch Protokolle mit den gleichen
Schwachstellen die Sicherheitsdefinitionen. In manchen Féllen ist die Definition von Funktionalitdten
relativ einfach, in anderen aber sind viele Details zu beachten.

e Das zugrundeliegende Kommunikationsmodell ist fiir die Sicherheitsdefinition von grofer Relevanz. Ist
das Kommunikationsmodell unrealistisch, so ist auch die Sicherheitsdefinition nicht viel wert. Aufgrund
des relativ hohen Detailreichtums dieser Modelle (es miissen auch komplexe Aktionen wie Korruption
von Parteien berticksichtigt werden), ist es schwierig, die Qualitit eines Kommunikationsmodells einzu-
schitzen.

e Aufgrund des Detailreichtums der Kommunikation tendieren Sicherheitsbeweise zu hoher Komplexitét,
sie werden dann nicht formal gefiihrt und kénnen deshalb leicht unentdeckte Fehler enthalten.

Vorschlage fiir Sicherheitsmodelle finden sich u. a. in [Can00, PW94, Bea91, Unr02]. Wir legen dieser Arbeit
das in [Can00] dargestellte zugrunde (im folgenden kurz das Canetti-Modell genannt), dieses Kapitel und die
zugehorigen Beweise in Anhang A sollten aber auch mit obigen Erlauterungen allein weitgehend verstandlich
sein.

Es stellt sich nun die Frage, inwiefern sich die Ergebnisse der vorliegenden Arbeit im Rahmen einer Definition
der Sicherheit von Protokollen einordnen lassen, und inwieweit sich dieser Aufwand lohnt. Das Generieren von
Zufall kann als Ein-Parteien-Protokoll aufgefafst werden, auf Anfrage beginnt die Partei zu rechnen und gibt
ein oder mehrere Symbole zuriick. Fiir sich allein stehend ist dann ein Sicherheitsergebnis in einem solchen
Modell noch nicht sehr gewinnbringend, jedoch ist in vielen Sicherheitsmodellen eine sogenannte Komposition
von Protokollen moglich (siehe z. B. [Can00, Unr02]). Dies besagt in etwa das folgende:

e Ist bewiesen, dak ein Protokoll 7, welches eine Funktionalitit F benutzt, sicher ist (d.h. eine Funktiona-
litdt G sicher realisiert), und ist weiterhin bewiesen, daf ein Protokoll ¢ die Funktionalitit F realisiert,
so ist auch das Protokoll n¢ sicher, welches dadurch entsteht, daft Aufrufe von G durch Aufrufe von p
ersetzt werden.

Die eben vorgestellte Form der Komposition ist die universelle Komposition, es existieren auch schwéchere
Formen der Komposition, die z. B. einfach nur die Hintereinander- oder Parallelausfiihrung mehrerer Instanzen
desselben Protokolls erlauben, diese sind aber fiir unserem Fall nicht michtig genug.

Die Komposition 1dft sich nun wie folgt anwenden: Wenn wir gezeigt haben, daf eine Zufallsquelle sicher
ist (was dies genau heifit, d.h. welche Funktionalitdt wir zugrunde legen, sehen wir weiter unten), und wenn

7Das heifit der statistische Abstand fillt hinreichend schnell (z. B. exponentiell oder superpolynomiell, je nach Definition).
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6.2 Vergleichende Sicherheitsdefinition

wir ein Protokoll haben, welches unter Benutzung einer idealen Zufallsquelle sicher ist, so ist dieses Protokoll
auch sicher unter Benutzung der realen Quelle.

Wir miissen nun definieren, was wir als sichere Quelle definieren. Hierzu schlagen wir zunéchst die folgende
Variante vor:

Definition 6.3: Funktionalitit Fruq x: Nicht abbrechende Zufallsquelle
Sei ¥ nichtleer und endlich. Dann hat die ideale Funktionalitit Frnq,x das folgende Verhalten:

e Fiir jede Partei P; initialisiere die Variable p; := 1 (Nummer des néchsten Symbols).

e Bei Empfang der Nachricht (random) von Partei P;, wiahle zufillig gleichverteilt ¢ € ¥ und sende
(data,pj,o) an Pj. Setze p; := p; + 1.

e Ignoriere alle anderen Nachrichten. O

Es ist offensichtlich, daf wir diese Funktionalitit mit unseren Mechanismen i.a. nicht realisieren koénnen,
da unsere Quellen in manchen Féllen aufhdren, Daten zu liefern, was der Funktionalitét Frnq 5 aber untersagt
ist. Die Stirke unserer Quellen liegt darin, daf, falls Daten ausgegeben werden, diese von hoher Qualitét sind.
Um dies widerzuspiegeln, definieren wir die folgende Funktionalitét:

Definition 6.4: Funktionalitit Farnq,»: Abbrechende Zufallsquelle
Sei 3 nichtleer und endlich. Dann zeigt die ideale Funktionalitdt Farna,» das folgende Verhalten:

e Fiir jede Partei P; initialisiere die Variablen p; := 1 (Nummer des néchsten Symbols) und ¢; := 0 (wenn
g; = 1, hilt die Quelle fiir P; an).

Bei Empfang der Nachricht (init) von Partei P; sende (init, j) an den Adversary.

Bei Empfang der Nachricht (stop, j) vom Adversary, setze ¢; := 1 und sende (nodata,p;) an P;.

Bei Empfang einer Nachricht der Form (random) von Partei P; unterscheide die folgenden Félle:

— Es wurde noch keine Nachricht (init) von P; empfangen. Dann ignoriere die aktuelle Nachricht.
— Es ist g; = 1. Dann sende (nodata, pj) an Pj. Setze p; := p; + 1.
— Andernfalls wihle o € ¥ zufillig gleichverteilt und sende (data, pj,o) an Pj. Setze p; := p; + 1.

Ignoriere alle anderen Nachrichten. d

Diese Funktionalitit erlaubt es dem Adversary, jederzeit die weitere Auslieferung von Daten an eine Partei
zu unterbinden. Dabei werden die Parteien getrennt gehandelt, um die Tatsache wiederzuspiegeln, dafs jede
Partei eine eigene, von den anderen unabhéngige Zufallsquelle benutzt. Da das Scheduling im Canetti-Modell
den Adversary erst aktiviert, wenn die Funktionalitit die Anforderung von Zufall beantwortet hat, ist das
Unterbinden einer weiteren Auslieferung von Daten wie folgt vorgesehen:

e Die Funktionalitét erhilt eine Nachricht (random).

e Sie antwortet mit einer Nachricht (data, .. .).

e Der Adversary ist fiir die Auslieferung dieser Nachricht zustdndig. Will er, dafk keine weiteren Daten
geliefert werden, so unterbindet er die Auslieferung der Nachricht und teilt dies mittels (stop,...) der

Funktionalitat mit.

e Die Funktionalitit sendet bei Empfang nun erneut eine Antwort, nédmlich (nodata,...), welche vom
Adversary dann ausgeliefert werden kann.
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6 FORMALE SICHERHEIT

Von jeder Partei wird auferdem vor der ersten Benutzung der Quelle eine Initialisierung mittels der Nach-
richt (init) verlangt. Dies ist gefordert, damit die Benutzung dieser Funktionalitdt aus Sicht der Parteien (d. h.
der Umgebung) der der Funktionalitit Fx (siehe Definition 6.5) gleicht.

Zu guter Letzt muf noch eine Definition folgen, welche beliebige Familien von Quellen modelliert. Aufgrund
der Struktur von Sicherheitsmodellen bietet sich als zugrundeliegendes Objekt eine parametrische Familie von
Quellen mit einer Menge von Wortern als Indexmenge an. Wir erhalten dann folgende Funktionalitét:

Definition 6.5: Funktionalitit Fy: Quellenfamilie X

Sei ¥ nichtleer und endlich, sowie X eine parametrische Quellenfamilie mit Iy C ¥7. Die Quellenfamilien

XU) seien dann Kopien von X, d.h. es haben X'U)(k,4) und X(j')(k,i) die gleiche Verteilung, aber alle
Quellen X (k, 1) sind stochastisch unabhingig.

Dann zeigt die ideale Funktionalitdt Fx bei Sicherheitsparameter k das folgende Verhalten:

Fiir jede Partei P; initialisiere die Variablen p; := 1 (Nummer des nichsten Symbols) und s; := o (Index
der zu verwendenden Quelle), wobei o ein festes Element von I sei (z. B. das lexikalisch kleinste).

Bei Empfang der Nachricht (init) von Partei P; sende (init, j) an den Adversary.

Bei Empfang der Nachricht (source, j,i) vom Adversary mit i € Ix setze s; := i, es sei denn p; > 1.

Bei Empfang einer Nachricht der Form (random) von Partei P; unterscheide die folgenden Félle:

— Es wurde noch keine Nachricht (init) von P; empfangen. Dann ignoriere die aktuelle Nachricht.

— Seio := (X(j) (k, Sj))pj' Ist o = 1, so sende (nodata, p;) an Pj, sonst (data, pj, o). Setze p; := p;j+1.

Andere Nachrichten ignoriere. O

Diese Funktionalitéit iiberldffit dem Adversary die Wahl der Quelle, wie dies in der Interpretation parame-
trischer Familien von Quellen auf Seite 37 bereits angedeutet wurde.

Damit der Adversary die Moglichkeit hat, die Quelle festzulegen, mufs er noch vor der ersten (random)-
Nachricht aktiviert werden. Um dies zu garantieren, wurde in die Spezifikation mit aufgenommen, daf jede
Partei ihre Quelle mit einer (init)-Nachricht initialisieren muf.

Mit diesen Definitionen geriistet konnen wir nun folgendes untersuchen: Sei A" eine parametrische Familie von
Quellen, die einen der Sicherheitsbegriffe aus Definition 6.2 erfiillt. Realisiert dann die Funktionalitiit Fx '8 si-
cher die ideale Funktionalitdt Farnd ., ? Leider miissen wir dies verneinen, wie das Beispiel in Abschnitt A.6.1,
Seite 86 zeigt.

Es ist also nétig, noch die folgende Bedingung zu stellen:

Definition 6.6: Simulierbare Familie von Quellen

Eine parametrische Familie X' von Quellen heifst simulierbar, wenn [y eine effizient entscheidbare Sprache
iiber einem Alphabet ¥; ist und es eine probabilistische Turingmaschine M mit folgenden Eigenschaften
gibt:

e Es existiert ein Polynom p, so daf fiir alle k € N, i € I, n € N, d € {0,1}* die Turingmaschine M bei
Eingabe (k,4,n,d) hochstens p(k + |i| + n) Schritte lduft und eine Ausgabe der Form (o, d’) liefert mit
0 €Yy und d € {0,1}*.1?

e Sei Dy eine konstante Zufallsvariable mit Wert \. Es entstehe Y9 (i € Iy, k € N) durch folgenden
Zufallsprozess:

(DD, v, 00y o= M(k,i,n, D)) (n>1).

n n

Dann existieren eine von k,i unabhingige superpolynomielle Funktion f : N — Ry und ein von k,7
unabhéngiges Polynom p, so daf fiir hinreichend grofses £ € N fiir jedes [ € N gilt:

SD(yH Y (X(k, i), ... (X(K,D)),) < %. (12)

18Das heifit genaugenommen das Protokoll, welches alle Anfragen direkt an diese Funktionalitiit weiterleitet.
19Die Ein- und Ausgaben seien in geeigneter Weise kodiert.
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6.2 Vergleichende Sicherheitsdefinition

Ist in (12) das Polynom p = 0, so sprechen wir von einer ezakt simulierbaren Familie von Quellen. a

Diese Eigenschaft besagt, daf die Quelle durch eine strikt polynomielle probabilistische Turingmaschine simu-
lierbar ist.

Ob die Eigenschaft, bezogen auf eine tatséchlich implementierte Quelle, realistisch ist, oder ob man den
bei der Auswahl des Symbols eventuell auftretenden chaotischen Prozessen superpolynomielle Rechenleistung
zuschreibt, ist eine Frage, deren Untersuchung den Rahmen dieser Arbeit sprengen wiirde; die Entscheidung
bleibt dem Leser iiberlassen.

Es ergibt sich der schlieflich der folgende Satz:

Satz 6.7: Sicherheit von Fy
Ist X' eine simulierbare und superpolynomiell zuféllige Familie von Quellen, so wird Fagnd,s., von Fx
sicher realisiert (im Canetti-Modell). O

Der Beweis findet sich in Abschnitt A.6.2, Seite 87. Er diirfte auch auf die meisten anderen vergleichenden
Sicherheitsmodelle iibertragbar sein, eventuell muf Definition 6.6 leicht angepafit werden (z. B. f als exponen-
tielle Funktion gefordert werden o. &.).

Wenn das Kommunikationsmodell so erweitert wird, daff man den Adversary zwingen kann, die Quelle
festzulegen (d.h. die Nachricht (source, j,i) zu senden), bevor er mit der Umgebung oder irgendeiner Partei
kommuniziert hat, greift das Beispiel aus Abschnitt A.6.1, Seite 86 nicht mehr. Es ist uns unbekannt, ob in
diesem Fall in Satz 6.7 die Bedingung der Simulierbarkeit der Quellenfamilie fallengelassen werden kann.

41



Kapitel 7

Statistische Tests

In der Praxis ist es meist nicht moglich, bestimmte Eigenschaften wie die Qualitédt des Zufalls einer Quelle zu
beweisen. In diesem Fall ist es notwendig, mittels statistischer Tests zumindest starke Indizien fiir das Zutreffen
der gewiinschten Eigenschaften zu erlangen.

Bei der Untersuchung eines Tests gehen wir von der folgenden Situation aus: Es liegt ein parametrisiertes
Wahrscheinlichkeitsmafy Py (9 € ©) vor, sowie eine Aufteilung ©® = O¢ U O in disjunkte Mengen. Ist eine
Py-verteilte Zufallsvariable X (mit unbekanntem 1) gegeben, so interessiert uns die Frage, welche der beiden
folgenden Aussagen zutrifft:

e Hypothese: Es ist ¥ € Q.
o Alternative: Es ist 9 € ©;.

Ein statistischer Test besteht nun einfach aus eine Menge K, dem kritischen Bereich, und wir verfahren wie
folgt:

o Ist X ¢ K (liegt die Stichprobe nicht in K), so entscheiden wir uns fiir die Hypothese,
e ist X € K, so entscheiden wir uns fiir die Alternative.

Natiirlich wird i.a. kein Test immer die korrekte Aussage treffen, es konnen die beiden folgenden Fehler
auftreten:

e Fehler erster Art: Die Hypothese trifft zu, aber es wird sich fiir die Alternative entschieden.
o Fehler zweiter Art: Die Alternative trifft zu, aber es wird sich fiir die Hypothese entschieden.

Zumeist gibt man einen maximalen Fehler erster Art vor und sucht dann einen dazu passenden Test. Ist
der Fehler erster Art garantiert kleiner-gleich «, so spricht man von einem Test zum Niveau «.

Oftmals gibt man keinen kritischen Bereich an, sondern eine Testfunktion fr mit Werten in R, so dafs
fr(X) bei zutreffender Hypothese eine bekannte Verteilung hat (z. B. Standardnormalverteilung). Dann kann
man daraus leicht zu beliebigem Niveau einen kritischen Bereich konstruieren.

Ein mit einem Parameter N (z.B. der Stichprobenlinge) parametrisierter Test heifit konsistent, wenn fiir
wachsendes N die maximale Wahrscheinlichkeit eines Fehlers zweiter Art gegen 0 geht.

7.1 Tests fiir Zufilligkeit

Nun wollen wir kurz einige einfache und verbreitete Tests der Zufélligkeit von bindren Quellen vorstellen. Die
Hypothese ist also immer ,, X ist gleichverteilt auf {0, 1}N“

Alle diese Tests sind mindestens mit der Liange der Stichprobe parametrisiert und verlangen dann auch
eine Stichprobe mindestens dieser Linge. Wir werden im folgenden die Tatsache vernachlissigen, daft Quellen
nach unserer Definition 2.1 die Lidnge der Stichprobe beschrinken konnen. In der Praxis wird man dann so
vorgehen, daf man, wenn die Quelle keine hinreichend grofe Stichprobe liefert, entweder die Hypothese als
abgelehnt ansieht (vorsichtige Vorgehensweise), oder den Testparameter auf die erhaltene Stichprobenlinge
setzt (heuristisch-mutige Vorgehensweise). Um formal aussagekriftige Argumente zu erhalten, miifite diese
Vorgehensweise allerdings im Beweis berticksichtigt werden.

In vielen Fillen ist eine Verallgemeinerung auf nicht binire Quellen ohne weiteres moglich und hier nur der
Einfachheit halber unterlassen worden.

Einen kurzen Uberblick iiber Tests der Zufilligkeit bietet auch [Mau92].

7.1.1 Hiufigkeitstest

Der einfachste Test ist der Hdaufigkeitstest (frequency test). Dieser zéhlt einfach die relative Haufigkeit der 1.
Bei einer zufilligen Quelle miilte diese ungefihr 1 betragen.
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7.2 Test der Symbolgewichtung

Bei einer Stichprobenlidnge N ist die Testfunktion

fr(@) = —= (Z zi — %) (z € {0,1}"),

und fr(X) hat bei zutreffender Hypothese fiir grofe N approximativ Standardnormalverteilung (geméfs dem
Zentralen Grenzwertsatz).
Lafst die Alternative nur unabhingig identisch verteilte Quellen zu, so ist dieser Test konsistent.

7.1.2 Serientest

Der Serientest (serial test) ist eine Verallgemeinerung des Haufigkeitstests. Hier werden Blocke einer Lénge L
untersucht und die relativen Haufigkeiten aller Sequenzen dieser Lange berechnet. Fiir zufllige Quellen ist zu
erwarten, dak jede Sequenz die relative Hiufigkeit 2= hat.

Die Stichprobenlinge sei wieder N, sowie f;(z) fiir z € {0,1}" und i € {0,...,2% — 1} die Anzahl der
Blocke von x mit bindrer Représentation i. Dann ist die Testfunktion definiert durch

281 9
fr(e) = S (i)~ 737) (z € {0,1}").
i=0

Es hat fiir N > L bei zutreffender Hypothese f7(X) approximativ Chi-Quadrat-Verteilung mit 2% — 1 Frei-
heitsgraden.

7.1.3 Lauflingentest

Der Lauflingentest (run test) z&hlt die Anzahl der Liufe (konstante Teilsequenzen) der verschiedenen Léngen.
Es sei 7 (z) fiir 0 € {0,1} und ¢ € N die Anzahl der o-Liufe der Lénge i in z.

Es sei weiter NV die Stichprobenldnge und L ein Parameter, welcher die maximale zu beriicksichtigende
Lauflédnge angibt. Dann ist die Testfunktion:

L r‘-’m—f\izz
frn =y Y =)

ce{0,1} i=1 2i+2

(= € {0,1}),

und fr(X) ist fiir groke N approximativ x?-verteilt mit 2L Freiheitsgraden.

7.1.4 Autokorrelationstest

Der Autokorrelationstest (autocorrelation test) hat als Parameter die Verzogerung 7 € N und die Stichproben-
linge N. Dieser Test basiert darauf, daR die Zufallsfolge Y(7) := (X; @ X;,); fiir zufilliges X auch zufillig
ist. Der Autokorrelationstest fiir X ist dann genau der Hiufigkeitstest fiir Y(7).

7.1.5 Maurers Universaltest

Ein weiterer Test, der laut [Mau92] alle obigen Tests einschlieft, ist Maurers Universaltest (Maurer’s universal
test). Wir verweisen auf [Mau92] fiir eine Beschreibung dieses Tests, hier seien nur die Parameter aufgezihlt:

e Die Stichprobenlinge N, wie bei den anderen Tests auch,
e cine Blocklange L wie beim Serientest,
e cine Prifixlange ), welche angibt, wieviel der Stichprobe fiir eine Vorverarbeitung verwendet werden

soll.

7.2 Test der Symbolgewichtung

Liegt nun eine Quelle vor, fiir die wir ein Modell aufgestellt haben, und aus der wir mittels adaptiver Extraktion
(Satz 4.8) Zufall extrahieren wollen, so gilt es, dieses Modell zu testen, oder zumindest die Behauptung, daf
unser Extraktionsverfahren aus dieser Quelle guten Zufall extrahiert.

Man ist nun versucht, wie folgt vorzugehen:
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e Anhand der Modellierung konstruieren wir einen Extraktor.

e Mit dem Extraktor generieren wir aus der Quelle eine (hoffentlich zuféllige) Symbolfolge.

e Dann wenden wir oben genannte (und evtl. andere) Tests der Zufalligkeit auf das Resultat an.
Dieses Vorgehen hat drei Nachteile:

e Zum einen bendtigen wir fiir hohe Qualitét des Zufalls einen exponentiell oder zumindest superpolymiell
geringen statistischen Abstand zur Gleichverteilung, aber die Definition des statistischen Abstands sagt
ja gerade aus, dafs die Wahrscheinlichkeit eine perfekte von einer schlechten Zufallsfolge zu unterscheiden
proportional zu diesem Abstand ist. Somit werden wir bei polynomiell vielen Testldufen alle Quellen
akzeptieren, deren stochastischer Abstand zur perfekten Zufalligkeit mit einem Polynom hoéheren Grades
wachst.

e Die Quelle kann — egal wie gut der Test ist — immer noch versteckte Eigenschaften haben, die die Zufallig-
keit zerstoren, aber von unserem Test nicht bemerkt werden. Hier konnen wir drei Typen unterscheiden:

— Eigenschaften, die zwar in den Testsequenzen bereits auftreten, von unseren Tests aber nicht be-
merkt werden. Dieses Risiko kann reduziert (aber nicht ausgeschlossen) werden durch die Anwen-
dung immer komplexerer Tests,?® welche aber immer mehr Testdaten bendtigen.

— Eigenschaften, die erst in der Zukunft auftreten. Diese konnten z.B. von dufieren Umwelteinwir-
kungen abhingen (z.B. Anderung des Luftdrucks, der Gravitation etc.) oder einfach von inneren
Verschleifferscheinungen. Dieses Risiko kann man versuchen zu verringern, indem man einerseits
versucht, die Quelle gut abzuschirmen, und andererseits die Quelle mit internen Uberpriifungs-
einrichtungen versieht, die testen sollen, ob die Quelle noch so funktioniert wie zu Beginn (zur
Testzeit).

— Eigenschaften, die von einer gegnerischen Partei beeinflufst werden konnen (z.B. wegen der Emp-
findlichkeit gegeniiber bestimmten Magnetfeldern). Diese stellen deshalb ein besonders hohes Risiko
dar, da diese Partei die Eigenschaften erst zutage treten lassen wird, wenn sie sie benotigt, aber
sicherlich nicht wéhrend des Testlaufs. Auch hier ist eine Abschirmung ein Weg zur Verringerung
des Risikos.

e Den dritten Nachteil erldutere das folgende Experiment:

— Man nehme eine schlechte Zufallsfolge (beispielsweise eine unabhéngig identisch verteilte binére
Folge mit P(Xo =1) =0,51).

— Man wéhle eine zuféllige quadratische Toeplitz-Matrix, welche auf der Diagonale konstant 1 und
unter der Diagonale konstant 0 ist (z. B. der Grofe 1001 x 1001).

— Dann wende man auf die Zufallsfolge blockweise die Matrix an und teste das Ergebnis mit den
verschiedenen Zufallstests.

Wir haben dieses Experiment mit obigen Beispielwerten durchgefiihrt und sind zu folgenden Ergebnissen

gekommen:
Test, Stichprobenlidnge N Sonst. Parameter akzeptiert fiir Niveaus
Hiufigkeitstest 10? 0,75, 0,76, 0,99
Autokorrelationstest 10° T=1 0,70, 0,68, 0,96
Serientest 10° L=16 0,34, 0,25, 0,32
Laufléingentest 10° L=15 0,59, 0,03, 0,58
Maurers Universaltest 10? L =16, Q = 655360 0,21, 0,56, 0,62

Dabei wurde jeder Test dreimal durchgefiihrt, angegeben sind immer die kleinstmdglichen Niveaus, fiir
die die jeweiligen Tests noch akzeptiert hétten, gerundet auf zwei Nachkommastellen.

Die Ursprungsfolge hingegen wird sogar bei einer Stichprobenlinge von nur 107 und einem Niveau von
1079 vom Hiufigkeitstest, vom Serientest und vom Lauflingentest nur sehr selten akzeptiert.?!

20Ein Test, welcher zumindest im Grenzfall alle Eigenschaften erkennt, ist der Kolmogorov-Test, welcher zu einer Folge unter den
diese Folge generierenden Turingmaschinen die mit kleinsten Godelnummer wéhlt. Der Test akzeptiert dann, wenn Logarithmus
der Godelnummer nicht wesentlich kleiner als die Linge der Folge ist. Leider ist dieser Test nicht berechenbar.

21 Beim Autokorrelationstest und bei Maurers Universaltest sind grékere Stichproben nétig.
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Da unsere Nachbearbeitung die Anwendung einer Bijektion darstellt, mufs die erhaltene Folge genauso
schlecht sein wie die Ursprungsfolge. Jedoch merken dies die Tests nicht. Deshalb diirfen wir erwarten,
dafs auch bei falsch gewdhlter Modellierung nach Anwendung des adaptiven Hash-Extraktors die Tests
die resultierende Folge fiir gut befinden, denn ein Teil der Nachbearbeitung besteht aus dem Anwenden
von Toeplitz-Matrizen, welche oft auch noch grofer sind als die oben benutzte 1001 x 1001-Matrix. Also
ist ein Test nach Anwendung des Extraktors nicht sinnvoll.

Die ersten beiden Punkte sind prinzipieller Natur, dem dritten wollen wir in diesem Kapitel beikommen,
indem wir einen Test vorstellen, der eine Quelle nicht auf Zufalligkeit testet (denn unsere unbearbeitete Quelle
ist nicht zufillig), sondern darauf, ob eine gegebene Symbolgewichtung ihr Verhalten korrekt beschreibt.

Definition 7.1: Gewichtungstest
Es sei ¥ nichtleer und endlich, F' > 0, m,0 € £*, || > 0,6 € Rso, N € N, M € No, L € N, L > |ng|.

Dann sei b;(z) fiir z € £V der i-te Block der Linge L in z, also
bz(l’) = m(i—l)L—‘,—l e LiL
und n,,(z) fir w € ¥& die Anzahl der b;(z) mit b;(z) = w, also

v/ L]

ne(x) == Z 0(bi(z) = w).

Weiter seien fiir p € X7, L* := L — |7y

N (T) 1= Z Nr(T),

geXlel
i) ==Y ng(z),
pexLr
Nore () — 27Ny (2)

V(@ —27%)n,(x)

fcp(iv) =

0.
mit § = 0.

Dann ist die Testfunktion definiert durch

fr(@) =Y max{0, f(«)}*

penL®

und der kritische Bereich K des Gewichtungstests fir n(...w; 0) > € mit Schranke F, Stichprobengrofse M
und Blocklinge L durch
K={zex": fr(z) > F oder i(z) < M}.

Weiterhin ist der kritische Bereich des Gewichtungstests fir n(...m; 0) = oo mit Stichprobengrifie M und
Blocklinge L
{zexl: 3p e nyy,(z) #0 oder f(z) < M}. O

Dieser Gewichtungstest hat, gegeben eine Quelle X, das Ziel, die Hypothese ,n{ X} (é7; 0) > ¢ fiir alle £ € ¥*¢
zu testen. Hierzu wird die Stichprobe z in Blocke b;(x) der Linge L zerlegt. Aus diesen Blécken wird eine
Statistik erstellt, mit welcher absoluten H&ufigkeit n,.,(z) nach @7 die Symbolfolge  folgt. Stimmt die Hy-
pothese, so 14t sich ngx,(X) als Summe von n, (X) Bin(p)-verteilten Zufallsvariablen auffassen, mit p < 2%,
Wir kénnen n,r,(X) nach oben abschiitzen,?? wenn wir p = 27¢ annehmen. Damit wird f,(X) durch eine ap-
proximativ standardnormalverteilte Zufallsvariable nach oben abgeschétzt. Also ist (mit NV, als unabhéngigen,
standardnormalverteilten Zufallsvariablen)

P(X €K) = P(f1(X) > F) < P(Zmax{O,Nw}z > F) = ap,

22Wir sagen, die Zufallsvariable X schiitzt die Zufallsvariable Y nach oben ab, wenn fiir alle t € R gilt: P(X > t) > P(Y > t).
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wenn wir zunéchst einmal M = 0 annehmen. Es liegt also dann ein Test zum Niveau ap vor.?

Die Zusatzbedingung n(X) > M fithrt zwar dazu, daf der Test fiir M > 0 nicht mehr das Niveau a hat,
jedoch kann es ohne diese Bedingung passieren, dafs der Test die Hypothese akzeptiert, wenn gar keine oder
nur sehr wenige Blocke der Form g gefunden wurden, also die Hypothese eigentlich gar nicht gepriift wurde.

Unser Ergebnis wird von der folgenden heuristischen Aussage exakter dargestellt und zusammengefafit:

Heuristik 7.2: Niveau des Gewichtungstests

Sei X eine Quelle iiber ¥, a € [0,1], 7,0 € £*, |g| > 0, € RygU {0}, N € N, M € No, L € N, L > |7,
L* := L —|mg|.

Es sei F' € R~ mit
#nL” I
S A #X .
> (P ) aw < (13)
wobei x? die Verteilungsfunktion der Chi-Quadrat-Verteilung mit i Freiheitsgraden sei.

Es bezeichne K den kritischen Bereich des Gewichtungstests fiir 7(...7; 0) < e mit Schranke F', Stichpro-
bengrofe M und Blockldnge L, und 7 sei wie in Definition 7.1.

Ist niX}(€ém; 0) > ¢ fiir alle £ € ¥*, so gilt fiir groke M approximativ
P(X € Kund a(X) > M) < a. O

Eine ausfiihrliche Beweisskizze (aber kein formaler Beweis) findet sich in Abschnitt A.7.1, Seite 92.

Die Einschrinkung 7n(X) > M mag das Ergebnis theoretisch weniger schon machen, in der Praxis ist sie aber
nicht sehr hinderlich, wie folgende Uberlegungen zeigen sollen:

Der Test wird i. a. angewandt werden, um die Giiltigkeit von postulierten unteren Schranken fiir die zu einer
Quelle gehorige Symbolgewichtung zu priifen. Lehnt der Test eine dieser Schranken (z.B. n(...7; 0) > ¢€) ab, so
verwenden wir z. B. bei der Konstruktion eines Extraktors die direkt aus der Definition folgende untere Schranke
7(...m0) > 0. Wurde die urspriingliche Schranke abgelehnt, obwohl sie korrekt ist, und zwar nur wegen
(X)) < M, so hat der Extraktor mit Schranke 7(...m;0) > 0 fast die gleich Rate wie der mit n(...7;0) > €,
denn da die Quelle die Symbolfolge 7 sowieso fast nie ausgibt, fliefit diese Schranke in die Extraktion kaum
ein.?

Eine zu einem Niveau a passende Schranke F'1afst sich durch bindre Suche mit vertretbarem Aufwand beliebig
nah am Optimum finden, sofern #X%" nicht allzu groff wird,?> da die linke Seite von (13) streng monoton in
F f3llt.

23Die quadrierten normalverteilten Zufallsvariablen deuten an, daf es sich hier um eine Variante des Chi-Quadrat-Tests handelt.

24Es sei denn, es tritt der unwahrscheinliche Fall ein, daf die Quelle gerade so arbeitet, dak 7 zwar oft vorkommt, aber selten so,
daft es an der Position im Block liegt, an der es von unserem Gewichtungstest erwartet wird (denn dieser priift nur b;(X) = ¢mg
fiir alle ¢, ¢ von fester Linge.)

25]st #EL* sehr grof, so wird schon das Berechnen von fp sehr aufwendig.
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Kapitel 8
Extraktion in der Praxis

8.1 Software

Im Rahmen dieser Arbeit ist ein kleines Programm entstanden, welches es ermdoglicht, die vorgestellten Er-
gebnisse auszuprobieren. Allerdings sollte dieses Programm nicht dazu verwendet werden, um in kritischen
Anwendungen Zufall zu erzeugen; hierzu wird empfohlen, ein minimales, aber sehr gut iiberpriiftes Programm
zu schreiben.

Die Quellen zu diesem Programm finden sich auf der beigefiigten CD und unter

http://www.unruh.de/DniQ/randomextraction/
Um das Programm zu kompilieren, werden die folgenden Bibliotheken bendotigt:

e C-XSC 2.0. Es handelt sich hierbei um eine Klassenbibliothek fiir Intervallarithmetik, verfiigbar unter
http://www.math.uni-wuppertal.de/ xsc/xsc/cxsc.html.

e Qhull. Dies ist eine Bibliothek zum Rechnen mit konvexen Hiillen, verfiighar unter
http://wuw.geom.uiuc.edu/software/qhull/.

Das Programm wurde unter Linux entwickelt und lduft moglicherweise nur darunter.
In kompilierter Form besteht die Software aus zwei Komponenten:

e randomextract. Dieses Programm hat die folgende Aufrufsyntax:
randomextract [dateil

Hierbei ist datei eine Textdatei (Format siche Anhang B), die angibt, welche Aufgaben das Programm
erledigen soll.

e RandomExtraction. Dieses Programm stellt eine graphische Oberfliche zur Verfiigung, um random-
extract komfortabler zu verwenden. Als zusétzliche Hilfe erstellt RandomExtraction bei jedem Aufruf
von randomextract eine Datei namens gui. spec, welche die zuletzt an randomextract geleitete Eingabe
enthilt.

8.2 Die Miinchner Quelle

Im folgenden wollen wir die in dieser Arbeit entwickelten Methoden auf eine real existierende Quelle anwenden.
Es handelt sich hierbei um eine am Institut fiir Physik der Ludwig-Maximilians-Universtitiat Miinchen von
Prof. Harald Weinfurter und Dr. Christian Kurtsiefer entwickelte Quelle mit einer Ausgaberate von bis zu
20 Mbit /s, im folgenden die Miinchner Quelle genannt.

8.2.1 Versuchsaufbau

Die hier présentierten Details tiber die Miinchner Quelle entstammen [Haa02].
Die Miinchner Quelle verwendet folgenden Versuchsaufbau:

e Eine Leuchtdiode emittiert Lichtblitze mit einer bekannten durchschnittlichen Frequenz fg.
e Diese passieren eine getonte Scheibe mit einer unbekannten Absorbtionsrate 6.
e Nicht absorbierte Photonen treffen auf einen Photodetektor.

e Jeder vom Photodetektor gemessene Lichtblitz triggert ein angeschlossenes Flipflop, welches darauf seinen
Zustand wechselt.

e Mit einer von der Emissionsfrequenz unabhéngigen, bekannten Lesefrequenz f; wird der Zustand des
Flipflops ausgelesen.

e Die ausgelesenen Daten bilden die Zufallsfolge.
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Offenbar liefert die Quelle bei idealer Hardware fiir }c—g — oo perfekten Zufall. In praxi jedoch treten die
folgenden Probleme auf:

e Die Lesefrequenz f, liegt aus Effizienzgriinden nah an der Emissionsfrequenz fg.
e Die Absorbtionsrate 6 ist nicht bekannt.
e Der Detektor kann zeitweilig ausfallen, z. B. weil zu viele Lichtblitze in Folge aufgetreten sind (Blendung).

e Das Flipflop kann imperfekt sein in der Hinsicht, dat das Signal zum Umschalten ignoriert wird (evtl.
abhéngig vom aktuellen Zustand), oder dal beim Auslesen der falsche Wert {ibertragen wird.

8.2.2 Modellierung als CHMM

Wir wollen nun die Miinchner Quelle mit den zuvor beschriebenen Problemen als CHMM modellieren. Dazu be-
trachten wir den Zeitraum zwischen zweimaligem Auslesen des Flipflops. In dieser Zeit treten N Lichtblitze auf,
wobei N Po(fg/ fr)-verteilt ist (Poisson-verteilt mit Parameter fr/fr). Jeder Blitz wird mit einer Wahrschein-
lichkeit von 6 absorbiert. Die Anzahl der beim Detektor eintreffenden Lichtblitze ist also Po(0 fg/ f1,)-verteilt.

Der Detektor kann mit einer Wahrscheinlichkeit pg € B wihrend des betrachteten Zeitraums geblendet
werden oder sein, in diesem Fall nehmen wir an, dafs der Detektor beliebige Ausgaben produzieren kann (sprich
selbst entscheiden, ob das Flipflop nach dem betrachteten Zeitraum im gleichen oder in einem neuen Zustand
ist).

Weiterhin kann das Flipflop mit einer Wahrscheinlichkeit p;y € I wihrend des betrachteten Zeitraums ein-
oder mehrmals nicht umschalten. Wie schon beim Detektor nehmen wir dann an, daft der neue Zustand des
Flipflops dann beliebig sein kann.

Es ergibt sich eine Wahrscheinlichkeit p fiir den Wechsel des Zustands des Flipflops (gegeben alles vor
diesem Zeitraum geschehene), die innerhalb der folgenden Menge liegt.

{ppep+ (1 —pipp)t : prel—1I, ppel—B, t€[0,1]} =P,

wobei p die Wahrscheinlichkeit dafiir sei, daf eine Po(8fg/ f1)-verteilte Zufallsvariable einen ungeradzahligen
Wert annimmt (die ideale Umschaltwahrscheinlichkeit).

Wir modellieren die Zustandsiiberginge also wie folgt als CHMM, wobei wir zunéchst noch annehmen, die
Ausgabe des Flipflops entspriiche exakt seinem Zustand:26

P:1
1-P:0 1-P:1

Nun miissen wir noch modellieren, dafs das Flipflop falsch ausgelesen werden kann. Wir nehmen an, daf die
Ausgabe des Flipflops mit einer Wahrscheinlichkeit von maximal e fehlerhaft gelesen wird, dann erhalten
wir:27

\/

P:0

ps: 1, pi:0

ps:0, ps:l
ptp €1-P  p+p;€P,  p <eplp+p’), p;<erps+tpi)
Das Problem bei obiger Analyse ist, daf die Werte von P und ep schwierig zu bestimmen sind; auch sollte

die gesamte obige Analyse von einem Experten verifiziert werden. Wir werden deshalb im néchsten Abschnitt
einen anderen Weg gehen.

26Fiir den (willkiirlich gewéhlten) Beispielsfall P = [0,4,0,55] findet sich dieses CHMM in der Datei muenchenl.chmm, siehe
Abschnitt B.4.

27Fiir den (willkiirlich gewihlten) Beispielsfall P = [0,4,0,55], ¢ = 0,03 findet sich dieses CHMM in der Datei muenchen2. chmm,
siehe Abschnitt B.4.
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8.2.3 Schitzung der Symbolgewichtung

Mit Hilfe des in Abschnitt 7.2 vorgestellten Tests haben wir eine Schitzung fiir die Symbolgewichtung der
Miinchner Quelle aufgestellt. Dabei sind wir wie folgt vorgegangen:

e Fiir jede Wahl der folgenden Parameter

(fr.fe) € { (10 MHz, 12,5 MHz), (10 MHz, 25 MHz), (10 MHz, 125 MHz), (10 MHz, 200 MHz),
(20 MHz, 12,5 MHz), (20 MHz, 25 MHz), (20 MHz, 50 MHz), (20 MHz,200 MHz) },

a := 0,999, M =106, L :=8+1, i€{0,...,4}, 7 € {0,1}, 0€{0,1}

suchen wir jeweils das grofite e = E;f > SO daf die mit Lesefrequenz fr, und Emissionsfrequenz fg erzeug-
te Stichprobe z der Liinge 128 MB (entspricht ca. 10° Symbolen) den Gewichtungstest fiir 5(...m; 0) > ¢
mit Stichprobengréfse M und Blocklénge L zum Niveau a besteht.

Man beachte, dafs je ndher a an 1 liegt, die Schitzung von e desto niedriger, sprich sicherer wird. Daher
die ungewohnlich hohe Wahl von «.

e Fiir alle im vorangegangenen Schritt zugelassenen fr, fg und ¢ definieren wir folgende Schétzung der
Symbolgewichtung:

) 5 (Emo) =Rl (m € {0,1}%, 0 € {0,1}, £ € {0,1}").

Im Fall |5] > 1 schidtzen wir n(a; ) mittels Lemma 4.2 ab.
Die Ergebnisse der Schitzungen liegen unter den Dateinamen muenchen-*.weight in einem fiir random-
extract verstidndlichen Format vor (Nichtterminal (weighting), siche Abschnitt B.2).

e Wir approximieren die Rate der vorliegenden Quelle mit der Symbolgewichtung ngfL) s durch

(%) . N
) M2 1SS )

fofe = N =~ Niy pp(T1- - Tuo1; Ty)

v=1
(vergleiche hierzu die Bemerkungen auf Seite 25).

Es ergeben sich die folgenden Werte (gerundet auf zwei Nachkommastellen):

fu fe RG), Ry, Ry, RS, Ry,
10MHz 125MHz | 0,69 095 095 095 095
10MHz  25MHz | 088 099 099 099 0,99
10MHz 125MHz | 0,99 1,00 1,00 1,00 1,00
10MHz 200MHz | 0,99 1,00 099 1,00 0,99
20MHz 125MHz | 041 0,78 0,80 080 0,79
20MHz  25MHz | 061 089 093 093 093
20MHz  50MHz | 079 095 098 098 098
20MHz 200MHz | 099 099 1,00 1,00 0,99

Die in obiger Tabelle angegeben Raten sind die asymptotischen Raten, die wir nur bei gegen unendlich stre-
bender Blocklidnge erreichen kénnen. Nehmen wir jetzt eine Lebensdauer der Quelle von maximal 1000 Jahren
an, so wissen wir, daf§ die Quelle nicht mehr als [ = 10 Symbole ausgeben wird. Verlangen wir weiterhin,
daR das Ergebnis der Extraktion ¢ = 10~3%-zufillig sein soll, so ergibt sich, wieder gem#f der Uberlegungen
auf Seite 25, fiir die tatséchliche Rate bei Blockldnge n:

(im) _ p) €
Ry e ® Byppe = 5

mit ¢ := —2loge + 4logl = 400. Um die asymptotische Rate zu 90 % auszunutzen, miissen wir dann als
Blocklénge n := 10¢/ R verwenden. Fiir die verschiedenen Parameter haben wir die vorgeschlagene Blocklénge
und die zugehorige tatsdchliche Rate in folgender Tabelle zusammengestellt:
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foo g | on RRG | on RBLG | REG | on RG] n RRT
10MHz 12,5MHz || 5837 0,62 4192 0,86 | 4191 0,86 | 4193 0,86 | 4202 0,86
10 MHz 25MHz || 4542 0,80 | 4029 090 | 4030 0,90 | 4030 0,90 | 4038 0,89
10MHz 125MHz || 4024 0,90 | 4007 0,90 | 4013 0,90 | 4013 0,90 | 4018 0,90
10MHz 200MHz || 4039 0,89 | 4019 0,90 | 4030 0,90 | 4019 0,90 | 4031 0,90
20MHz 12,5MHz || 9818 0,37 | 5141 0,70 5007 0,72 | 4982 0,73 a078 0,71
20 MHz 25MHz || 6600 0,55 4489 0,80 | 4287 0,84 | 4288 0,84 | 4290 0,84
20 MHz 50MHz || 5036 0,72 4203 0,86 | 4068 0,89 | 4082 0,89 | 4082 0,88
20MHz 200MHz || 4040 0,89 | 4023 090 | 4012 0,90 | 4018 0,90 | 4021 0,90

Wir kénnen aus diesen Daten nun die folgenden Schliisse ziehen:

e Fiir eine gute untere Abschitzung der Symbolgewichtung geniigt es, das letztausgegebene Bit zu be-
trachten, ein Préfix groferer Lange bringt keine nennenswerte Verbesserung mehr (im besten Fall vier
Prozentpunkte).?® Dies macht es zum einen sehr einfach, die Symbolgewichtung auch fiir grofe Daten-
mengen schnell zu berechnen, und zum anderen deutet es darauf hin, dafs die Miinchner Quelle ein
Gedéchtnis von einem Symbol hat.

Da sich die Extraktionsrate fiir steigendes Verhiltnis fg/f;, nur unterproportional erhoht, erkennen
wir, dafs es sinnvoll ist, fiir festgelegte Extraktionsrate die Auslesefrequenz so hoch zu wihlen, wie die
Hardware es zulift.?

Ein interessantes Phinomen ist die Tatsache, daf bei f;, = 20 MHz, fp = 12,5 MHz die asymptotische
Extraktionsrate bei etwa 80 % liegt. Damit ergibt sich eine resultierende Datenrate von bis zu 16 Mbit /s,
wir erhalten somit mehr als ein Bit pro emittiertem Lichtblitz. Damit erkennen wir, daft der Zufall,
den die Miinchner Quelle erzeugt, nicht allein aus der zufélligen Absorption durch die geténte Scheibe
entsteht (dies konnte hochstens ein Bit pro Lichtblitz erkldren), sondern auch mit der ungleichméfigen
Emission durch die Leuchtdiode.

Diese These wird dadurch noch gestérkt, daf wir die Anzahl der Lichtblitze pro Zeitintervall 7 als
Po(7 fg)-verteilt modellieren kénnen, dann ist die Anzahl der die Scheibe passierenden Blitze Po(67 fg)-
verteilt. Dies ist aber auch die Verteilung, die wir fiir eine Leuchtdiode mit Emissionsfrequenz 6 fr und
ohne geténte Scheibe erwarten wiirden.

Die hier vorgestellte Analyse ist natiirlich mit groker Vorsicht zu geniefen und dient nur als Uberblick iiber
die zu erwartenden Parameter des Extraktionsverfahrens.

Vor einer tatséchlichen Implementierung miissen einerseits die den Schétzungen und Tests zugrundeliegen-

den Annahmen genauer spezifiziert und begriindet werden (welche Bedeutung hat z. B. die Wahl von a = 0,999
als Niveau), und zweitens wesentlich mehr Tests in verschiedenen Umgebungen gefahren werden.

28 In einigen Fillen ist sogar eine Verschlechterung von einem Prozentpunkt zu bemerken, dies ist aber damit zu erkliren, daf
fiir ldngere Prifixe die Stichprobe pro Prifix geringer wird und die Schitzung aus diesem Grund vorsichtiger ausféllt.

29Wobei nicht zu vernachlissigen ist, dak auch die fiir die adaptive Extraktion verwendete Hardware der limitierende Faktor
sein kann, da die Anwendung der Toeplitz-Matrizen aufwendig ist. (Die asymptotische Laufzeit betrigt zwar O(nlogn) bei
Implementation durch schnelle Fouriertransformation, aber fiir die vorliegenden Blockgréfien ist die Benutzung dieses Algorithmus

vermutlich noch nicht lohnend; hier bietet sich eher eine Faltung nach Karatsuba in O(n

1,58 an.)
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Schluftbemerkungen

Wir haben in dieser Arbeit gesehen, wie man zu Quellen verschiedenster Art adaptive Extraktoren konstruieren
kann. Weitere Forschung konnte z. B. in die folgenden Richtungen gehen:

Man kann untersuchen, inwiefern die resultierende Folge noch sicher ist, wenn man zur Laufzeit und
abhéngig von den ausgegebenen Daten die Parameter dndert (wie z. B. die Blocklidnge oder die gewiinschte
Qualitét).

Es ist denkbar, den Extraktor mit anwachsender Blocklinge zu konstruieren. Damit kann man einen
beispielsweise quadratisch abfallenden statistischen Abstand pro Block zur Gleichverteilung realisieren,
so daf der Gesamtabstand (in etwa die Summe iiber die Einzelabsténde) konvergiert. Dies wiirde es
ermoglichen, adaptive Extraktoren zu gestalten, die keine Beschrénkung der Eingabelénge haben.

Anstelle des Leftover Hash Lemmas sind vielleicht andere blockweise Extraktoren mdglich, man inter-
essiert sich dann dafiir, wie diese zu integrieren sind, und welche Auswirkungen auf das Gesamtsystem
auftreten.

Nehmen wir an, daf die Quelle ein beschrianktes Erinnerungsvermdégen hat, so ist es vielleicht mdoglich,
Seitenkanile gewisser geringer Ubertragungsrate zuzulassen. (Die derzeitige Modellierung, bei der der
Seitenkanal insgesamt nur eine beschrénkte (und sehr kleine) Menge an Daten iibertragen darf, liegt
darin begriindet, dafs er sonst zuviel Information iiber einen einzelnen Block ausliefern kénnte. Dies gilt
nicht mehr, wenn das Gedéchtnis zu kurz ist, um diese Informationen lange genug zu speichern, um sie
iibertragen zu konnen.) Es stellt sich vor allem die Frage nach einer guten Modellierung einer solchen
Beschriankung des Gedéchtnisses.

Statt initialen Zufalls kdnnte man auch eine zweite unabhéngige Quelle verwenden und untersuchen, wie
man das Verfahren dann anpassen muf (evtl. angelehnt an [CG88).

Die Sicherheit bei der Verwendung von geschitzten Symbolgewichtungen kann erhdht werden, indem wir
zur Laufzeit immer wieder unsere Annahmen iiber die Quelle priifen. Eine genauere Formulierung und
theoretische Modellierung dieser Idee wére wiinschenswert.

Auf der praktischen Seite benotigt man schnelle Implementierungen insbesondere der bei der Anwendung
der Toeplitz-Matrizen anfallenden Faltungen.

Und schlieflich gilt es, existierende physikalische Quellen zu untersuchen, zu modellieren und zu testen.

Abschliefsend méchte ich noch denen danken, die mich bei der Erstellung dieser Diplomarbeit tatkraftig un-
terstiitzt haben: Dr. Jorn Miiller-Quade wegen anregender Diskussionen, Aune Bauuncke fiir Unterstiitzung
daheim, und Manuel Kauers wegen schnellen und vor allem umfangreichen Korrekturlesens. Weiterhin sei auch
noch all jenen gedankt, welche hier nicht einzeln genannt wurden, aber dennoch den einen oder anderen kleinen
Fehler entdeckt haben.
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Anhang A
Beweise

A.2 Zu Kapitel 2

A.2.1 Lemma 2.6

Lemma 2.6: Abschitzungen der min-Entropie

Fiir jede diskrete Zufallsvariable X gilt:

Hoo(X) SH(X)a HOO(X)SHRen(X) g

Beweis: Es sei M der Wertebereich von X, dann ist
H(X)= )Y P(X =2)(-logP(X =2)) > Y P(X =12)Hy(X) = Hoo(X)
zEM zeEM

und fiir eine von X unabhingige Zufallsvariable X' gleicher Verteilung gilt

PX=X")= E PX'=1|X=2"P(X =2") < E P(X':a:')ma}alcP(X:w):ma}\}(P(X:a:),
zEe EasS
z'eM z'eEM

woraus sich
Hgen(X) = —log P(X = X') > —logmax P(X = z) = Hoo(X)

zeM
ergibt. |

A.2.2 Lemma 2.8

Lemma 2.8: Statistischer Abstand
Fiir diskrete Zufallsvariablen X und Y gilt

SD(X;Y) = 71}1Ca1>v<1|P(X eT)- P €T)|,

wobei M die Vereinigung der Wertebereiche von X und Y sei. d

Beweis: Zu zeigen ist

%%;WX =)~ P(Y = a)| = max| P(X € T) = P(Y €7)],

wobei M die Vereinigung der Wertebereiche von X und Y sei.

Essei T* :={a€ M : P(X =a) > P(Y = a)}. Damit ist

N IPX=a)-P(Y =a)|=1) (PX=a)-PY =a)+1> (P =a)-PX =a))
a€eM a€T* a€M\T*

=L(P(XeT)—PY €T"))+1(PY ¢T*) - P(X ¢ T))
=3P(XeT*)-PY €T*)|+ (1 -PY €T*) - (1-P(X €T))|
|P(X € T*) - P(Y € T%)|

qmcaz\’}|P(X €T)-P(Y €T)|. (14)

AN
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Weiterhin gilt

CcM

%aﬁp(x eT)-P(Y eT)| = T_ax(§|P(X eT)-PYeTl)|+3|P(X¢T)-P

(v ¢ 1))

< max(§Z|P(X:a)—P(Y:a)| +13 |P(X:a)—P(Y:a)|)

T TCM
- a€T a€eM\T

=1 ) |P(X =a)- P(Y =a)].
aceM

Aus (14) und (15) zusammen folgt die Behauptung.

A.2.3 Lemma 2.9

Lemma 2.9: Eigenschaften des statistischen Abstands

(15)

Es selen X, Y, Z, U Zufallsvariablen, U unabhingig von {X,Y, Z}, und f eine Funktion, die mindestens

auf den Wertebereichen von X und Y definiert ist. Dann gilt

wobei Mz der Wertebereich von Z sei.

Ist f injektiv, so liegt in (1) Gleichheit vor.

1
2
3

(
(
(
(4

)
)
)
)

Beweis: Es seien My, My, My, My die Wertebereiche von X, Y, Z, U. Weiter sei f 0.B.d.A. nur auf

M := Mx U My definiert. Dann ist nach Lemma 2.8:

SD(f(X); f(Y)) ZTE%MJP(J‘(X) € Ty) = P(f(Y) € Ty)|
= max |P(X € f7(Ty)) - P(Y € f7(Ty))]

< %ngaj\}ﬂP(X eT)-P(Y eT)|.
Damit ist (1) gezeigt.
Ist f injektiv, so folgt aus
SD(X;Y) > SD(f(X); f(Y))  und  SD(f(X); f(Y)) > SD(f " o f(X);

Gleichheit in (1).
Es sei M' := Mx U My U M. Gleichung (3) beweisen wir wie folgt:

SD(X;Z)=3% Y |P(X =a)-P(Z=a)
aEMx UMz
<t ¥ (|P(X:a)—P(Y:a)|+|P(Y:a)—P(Z:
aEMx UMz
<:i> |PX=a)-PY =a)|+35 > |PY=0a)-P(Z
aceM’ acM’

=SD(X;Y)+SD(Y; Z)
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Es ergibt sich (4) wie folgt:

SD(XZ;YZ)=3 Y |P(X=a,Z=2)-P(Y =a,Z = 2)|
aceM
zEMz
=3 Y |P(X=alZ=2)P(Z=2)-P(Y =a|lZ=2)P(Z = 2z)|
aEM
zEMz
= > P(Z=2)%> |P(X=alZ=2)—PY =alZ=2)|
zEMyz aceM
= Y P(Z=2) SD(X;Y]|Z = 2).
zEMyz

Und schlielich ergibt sich (2) wegen der Unabhéngigkeit von U von {X,Y} und

SD(XU;YU)2 Y P(U=u) SD(X;Y|U=u)= > PU=u)SD(X;Y)=SD(X;Y). ]
uEMy u€ My

A.2.4 Lemma 2.12

Definition 2.10: Perfekt zufillig

Sei S eine diskrete Zufallsvariable mit Werten aus Mg. Eine Quelle X iiber einem Alphabet ¥ heifst perfekt
zufillig unter Kenntnis von S, wenn fiir alle n € NU {oo} und s € Mg mit P(|X| =n,S = s) > 0 gilt:
X|[(|X| =n,S = s) ist gleichverteilt auf X" (mit £°° := XN).

Wird kein S angegeben, so setzen wir S := \. d

Lemma 2.12: Konkatenation von Zufallsquellen

Es seien S,Uy, ..., U, diskrete Zufallsvariablen, und U; sei perfekt zuféllig iiber ¥ unter Kenntnis von S,
Uj (j #1)-
Dann ist U; ... U, perfekt zufillig unter Kenntnis von S. d

Beweis: Wir zeigen die Aussage flir n = 2, der allgemeine Fall folgt induktiv.
Es seien U := U1Us, | € Ny und u € X
Da U, perfekt zufillig unter Kenntnis von U und S ist, gilt fiir a = 0,...,l mit P(|U;| =a, |U| =1, S =s) > 0:

PUi=ui...uq | U] =a, Ul =1, §=3s)=#x"" (16)

Und da U, perfekt zuféllig unter Kenntnis von Uy und S ist, gilt fir a = 0,...,l mit P(|JU1]| = a, U1 = uy .. . ug,
U =1,S=s)>0:

P(ngua_,_l...ul | Uil =a, Uy =uy...u,, Ul =1, S:s) = #xot, (17)

Damit folgt fiir P(|U| =1, S =s) > 0:

l
PU=u||Ul=1, S=s) =Y P(Ur=u...u, | |Us| =a, [Ul=1, §=5)-
a=0 P(Ug:ua+1...ul | Uil =a, Uy =uy...u,, |U| =1, S:s)-
P(|U1|:a||U|:l,S:s)
l
CEON T gS g P[] =a | Ul =1, S =)

a=0

= #y7 [
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A.3 Zu Kapitel 3

A.3.1 Lemma 3.1

Lemma 3.1: Unmdglichkeit deterministischer Extraktion

Sei M eine Menge, ¥ ein Alphabet mit #3 =: n, k € R>o und k < log # M —logn. Weiter sei A" die Menge
aller Zufallsvariablen X mit Werten in M und H(X) > k, und schlieflich f: M — XU {L}.

Dann existiert ein X € X, so daf P(f(X) € {0, L}) =1 fiir ein o € ¥, und so daf fiir jede iiber ¥ perfekt

zufillige Zufallsvariable U gilt:

n—1

SD(f(X);U) 2 (1-PU =1)).

n

Beweis: Es gilt ein X € X zu konstruieren, das der obigen Bedingung geniigt.

Es sei S; := f~1(i) fiir i € XU {L}. Dann sei 0 € ¥ so gewihlt, daf #S, > #S; fiir alle 5 € X.

Es ist damit
#S, +#5, > £

Es sei nun X eine Zufallsvariable mit Werten in M und folgender Verteilung:

P(X _ x) _ m, falls f(.'lj) S {O',J_},
0, sonst.
Nach (18) ist dann P(X = z) < 7, also Heo(X) > k, und somit X € &X.
Offensichtlich ist P(f(X) € {0, L}) = 1.
Es bleibt SD(f(X),U) nach unten abzuschétzen.

(18)

Nach Lemma 2.9 (1) kénnen wir U durch U’ ersetzen, wobei U’ := U fiir U € U {L} und U’ := L sonst,
da f(X) unter dieser Abbildung invariant ist, und der statistische Abstand wird sich nicht vergrofern. Somit

kénnen wir 0.B.d.A. U € £ U {1} annehmen.
Es seie:= P(U = 1) und 0 := P(f(X) = 1). Dann ist

2-SD(f(X),U) = |[P(f(X)=1) - P(U = 1)|
+ |P(f(X) =0)—PU = 0’)|
+ 3 |P(f(X)=6) - P(U =5)|
Fex\{o}
=[0—e|+|1-0)- L=+ (n-1)Lt=

n

1— _
6-}—1—175, (6 =0),
_ 1=+ =5 (0=1)
> (n —1)1=£ + min n’ ’
> ( ) l—e—L= (=),
1l—e¢ _ 1l—e
1-=—-¢ (6=1-5)
2n — 2
_ l1—e l—e __

(19)

Wir haben bei der Abschitzung nur vier mogliche Werte fiir 0 betrachtet, dies ist zulissig, da zwischen
diesen Werten der statistische Abstand monoton in § ist, und somit das Minimum an einem dieser Punkte

angenommen wird.

Es ergibt sich aus (19) die noch ausstehende Eigenschaft

n—1

SD(f(X),U) > Z=(1 - P(U = 1)).

n
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A.3.2 Leftover Hash Lemma, 1. Fassung

Definition 3.2: Universelle Hashfunktion
Es sei
h:Mrx Mx — MX
Dann heifit h universelle Hashfunktion, wenn #Myx > 1 und fiir alle z,2' € Mx, x # «' und a,a’ € My
gilt:
P(M(R,z) =a A h(R,2') =d') = (#My;)"?,

wobei R eine auf Mg gleichverteilte Zufallsvariable sei. d

Lemma 3.3: Leftover Hash Lemma, 1. Fassung

Es seien X, R, U Zufallsvariablen mit Werten in My, Mg bzw. M ¢, sowie k € R. Hierbei sei R gleichverteilt
auf Mg, U gleichverteilt auf My, Hren(X) > k, sowie X, R,U stochastisch unabhéngig. Weiter sei h :
Mp X Mx — M eine universelle Hashfunktion.

Dann ist
SD(R,h(R,X); R,U) < £1/#My - 27k, O
Beweis: Fiir beliebige z, 2" € Mx, a € My gilt
P(h(R,z) =a)= Y P(h(R,x)=a, h(R,a') =a') = > #M=#M_". (20)
a€M ¢ a€EM ¢

Es sei X’ eine von R und X unabhingige Zufallsvariable gleicher Verteilung wie X.
Wir setzen

=P(h(R,X)=a|R=7r)—P(U =a)
=P(h(r,X)=a)— P(U =a)

und

Eq(C) :=E((6(h(R,X) = a) - P(U = a)) - (3(h(R,X") = a) = P(U = a)) | C),

wobei wir E, statt E,(C) schreiben, falls P(C) = 1.
Es ist dann
(E|ZRol)’ <EZj, = B, (21)
Um E, zu errechnen, untersuchen wir zunéchst die folgenden bedingten Erwartungswerte (mit x,2' € Mx,
x #a'):
E.,X =z,X'=2") = P(h(R,z) = a,h(R,2") = a) — P(h(R,z) = a)P(U = a)
— P(h(R,2") =a)P(U = a) + P(U = a)®
(20) —2 -1 -1 -1 -1 —2
SHM " — #M M — H#M SH#M S+ M
=0 (22)
E,X =X"=2)=P(h(R,z) =a) —2P(h(R,z) = a)P(U = a) + P(U = a)*
= #M - 24 M I H#M L + # M
< #ML (23)

Diese Ungleichungen gelten natiirlich nur unter der Bedingung, daf die jeweiligen bedingten Erwartungswerte
definiert sind.
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Es ist also

E,= Y P(X=X'=2)E,(X =X'=u)
rEMx
+Y P(X=2,X'=a")E(X =2,X' =2)

z,2' €Mx
r#x’

(22),(
TN P = X =)
TzEMx

_ _ ! —1 _ 9—Hgen(X) —1
= P(X = X')#M ! =27 Hren (g )y =

<2 FgMt. (24)

Damit ergibt sich schliefilich

SD(R,h(R,X); R,U)=1% > |P(R=rh(R,X)=a)—P(R=r)P(U =a)|
a€EM g
reEMp
=3 > > P(R=1)Z =% Y ElZral
(LGMX reEMpr “’EMX

(21)
< %#MX Vv E,

@4, T =
< LMy 27 kM

A.3.3 Leftover Hash Lemma, 2. Fassung

Definition 3.4: Universelle Quasi-Hashfunktion
Es sei
h: Mg x Mx — Mj(.
Dann heifit h universelle Quasi-Hashfunktion, wenn es eine Familie von Bijektionen fz : My — M;(,
7 € My, gibt, so daf
h: (MRXMR)XMX — M;(
(r,7), x —  fr(h(r,z))

eine universelle Hashfunktion ist. O

Lemma 3.5: Leftover Hash Lemma, 2. Fassung

Es seien X, R, U Zufallsvariablen mit Werten in My, Mg bzw. M ¢, sowie k € R. Hierbei sei R gleichverteilt
auf Mg, U gleichverteilt auf My, Hgen(X) > k, sowie X, R,U stochastisch unabhingig. Weiter sei h :
Mp x Mx — M eine universelle Quasi-Hashfunktion.

Dann ist
SD(R,h(R,X); R,U) < £1/#My - 2. O

Beweis: Es seien h, f; und M i wie in Definition 3.4 (universelle Quasi-Hashfunktion). Weiter sei R eine von
R, X und U unabhéngige und auf M gleichverteilte Zufallsvariable.

Dann gilt nach Lemma 3.5

SD(R, R, fs(h(R,X)); R,R,U)=SD((R,R),

il
=
=
s
=
=
=
IN
(NI
=
b
N
Il
m
o
=
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Durch
(r,7,z) := (r, 7, f7 ' (z))

ist eine Bijektion auf Mg x Mgz x My definiert. Anwendung von 7 auf die linke Seite von (25) liefert nach
Lemma 2.9 (1): } }
SD(R, R, h(R, X); m(R, R,U)) <e.

Da (R, R,U) auf dem Definitionsbereich von 7 gleichverteilt ist, haben 7(R, R,U) und (R, R,U) die gleiche
Verteilung, also ergibt sich ~ ~
SD(R,R,h(R,X); R,R,U) <e.

Schlieflich liefert Lemma 2.9 (2) wegen der Unabhingigkeit von R:

SD(R,h(R,X); R,U) <e. [ |
A.3.4 Leftover Hash Lemma

Satz 3.6: Leftover Hash Lemma

Es seien X, R,U und S Zufallsvariablen mit Werten in Mx, Mg, My bzw. Mg, sowie k € R. Dabei seien
(X,S), R und U unabhéngig. Es sei U auf M und R auf Mg gleichverteilt. Schlieflich seien Hgen(X) > &
und h : Mg x Mx — My eine universelle Quasi-Hashfunktion.

Dann ist
SD(S,R,h(R,X); S,R,U) < %#MS #My - 2k, O

Beweis: Gegeben S = s erfiillen X, R und U die Bedingungen fiir Lemma 3.5 mit k := Hgen(X|S = s), also
ergibt sich

SD(S, R, h(R,X); S,R,U)"2">" P(S = 5) SD(R,h(R,X); R,U || S = s)

sEMg
< S P(S=s) %\/#Mx . 9~ Hpen (X|S=5)
sEMg
= 3 P(S=s)by/#My 3 P(X =1/S =52
seMs zeEMx
= L/#Me S P(X =a|S = )2 P(S = 5)?
sEMs TEMx
=3 %\/#MX Y P(X =u1,5=5)
sEMs TEMx
< Y LWHMg Y P(x =ap
seMs zeEMx
_ Z %\/#MX . 9~ Hpen(X)
sEMg

IN

SH#HMs [ # My - 27 [ |
A.3.5 Lemma 3.7

Lemma 3.7: Affine Transformationen als universelle Hashfunktion
Es sei IF ein endlicher Korper, Mx := ", M4 := F™ mit n > 1, m < n, und Mp := F™*" x F™ =

F™(n+1) Dann ist
h: MrpxDMx —> MX

(M,b), z +— Mz+b
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eine universelle Hashfunktion. O

Beweis: Ist m = 0, also #My =1, so folgt die Behauptung trivial aus der Definition universeller Hashfunk-
tionen.

Es sei R eine gleichverteilte Zufallsvariable mit Werten in Mg.
Seien n = m = 1. Fir z,2' € F, x # x und a,a’ € F gilt dann Mz + b = a und Mz’ + b = a’ genau fiir
M =2=% und b = a — Mz. Somit ist

z—z’

P(h(R,z) = a, h(R,2') =d') = #Mp' = #F > = #M}?.

Also kénnen wir n > 2 annehmen. Seien z,z' € F", x # 2’ und a,a’ € F™. Wahle nun b’ € F" so, dal x + b’
und z’ + b’ linear unabhingig sind (dies ist moglich, da dim F™ > 2), und ein reguldres S € F"*" so daft
S(x+0b)=e und S(z' + V') = es.

Wir setzen
M :={r € Mgr: h(r,z) =a, h(r,z') =ad'},

dann ist
#M=#{(M,b) e F™" xF™ : Mx+b=a, Ma' +b=ad"}
= #{(M,b) e F™" xF™ : Mz+b=a, Mz'+b=d
mit M := MS und b:= MSb +b}
= #{(M,b) € F™ " x F™ : MSx+ MSV +b=a, MSx' + MSV +b=a'}
=#{(M,b) e F™" xF™ : MS(z+bV)=a—-b MS(@' +b)=ad —b}

—_——— N

=e1 =e2
= #{(M,b) € F™" x F™ : M hat a — b in der ersten und a’ — b in der zweiten Spalte }

_ #Fm(n—2)+m.

Also
_ #M

P(h(R,z) =a, h(R,2") =d') = Sy

— #Fm(n—2)+m—mn—m — #F—Qm — #M;(Z m

A.3.6 Lemma 3.8

Lemma 3.8: Affine Toeplitz-Transformationen als universelle Hashfunktion

Es sei IF ein endlicher Korper, My :=F", My := F™ mit n > 1, m < n, und Mg := Toeplitz(IF"™*") x
™ = F?m+7-1 Dann ist
h: MrpxDMx —> MX

(M,b), z +— Mz+b

eine universelle Hashfunktion. O

Beweis: Es seien z = (2;),2' = (2}) €e F", 2 # 2', a = (a;),a' = (a}) € F™ und R eine auf Mg gleichverteilte
Zufallsvariable.
Wir setzen

M :={r € Mgr: h(r,z) =a, h(r,z') =ad'},

Da jedes M = (m;;) € Toeplitz(F™*") eineindeutig bestimmt ist durch t_,41,...,¢tpm_1 mit t;—; = my;,
entsprechen die Elemente von M den Losungen von

n n
ai:Zti,kmk—kbi, a;zzti,kl’k-f—bi (i:l,...,m).
k=1 k=1
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Dieses Gleichungssystem konnen wir schreiben als

by ay

<1m T(:c)) b;n _ a;/n (26)

mit 7'(v) € Fmx(m+n=1) ynd

(T(0))s = {vn+i_y, falls v € {i,...,i +n — 1},
w

0, sonst,
denn
n+m—1 i+n—1 n
(T(.Z') (t,n+1, - ;tmfl)T)i = Z(T(m))iutufn = Z Tptiply—n = Z Trptik (Z =1,... ,m)
v=1 v=1 k=1

und analog fir T'(z') und o'.
Da T'(v) fiir v € F™ \ {0} maximalen Rang m hat, gilt

Rg GL: :/:C((;'))> = Rg (10’” T(ig,(”i)m)> =Rgl, + RgT(z' — z) = 2m.

Damit hat die Matrix in (26) maximalen Rang 2m und liegt in F2™*(2m+2=1) "somit hat das Gleichungssystem
#IF" 1 Losungen, und #M = #F" 1,

Es folgt schliefslich

#M

P(h(R,z) = a, h(R,z') =d') = sy

— #E‘(n—l)—(m+n—1+m) — #F—Qm :#MA;(2 ]

A.3.7 Lemmata 3.9 und 3.10

Lemma 3.9: Lineare Abbildungen als universelle Quasi-Hashfunktion
Es sei IF' ein endlicher Korper, Mx :=F", M ¢ := F™ mit n > 1, m <n, und Mg := F™*" =2 F™". Dann

18t
h: Mpx Mx —> Mf(

M, x — Mz

eine universelle Quasi-Hashfunktion. O

Lemma 3.10: Toeplitz-Transformationen als universelle Quasi-Hashfunktion

Es sei IF ein endlicher Korper, My := F", My := F™ mit n > 1, m < n, und Mg := Toeplitz(IF™*") =
Fmtn-1 Dann ist
h: MrpxMx — MX

M, x — Mz

eine universelle Quasi-Hashfunktion. O

Beweis: Da die beiden Lemmata fast identische Beweise haben, werden jene hier zu einem zusammengefafst.

Setze My :=IF™ und fp(x) := x + 7. Mit der Notation aus Definition 3.4 ist

]N’L: (MRXMR)XMX — Mf(
(M), = —  fo(h(M,z)) = Mz +b

eine universelle Hashfunktion nach Lemma 3.7 bzw. 3.8, somit ist h eine universelle Quasi-Hashfunktion. B
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A.3.8 Lemma 3.11

Lemma 3.11: Vergrofierung des initialen Zufalls einer Hashfunktion

Ist h: Mygy x Mx — M eine universelle Quasi-Hashfunktion, und f : Mg — My (g) eine Abbildung mit
#f7(r) =#f1(r") fiir alle r,r' € M}, dann ist auch

hf: Mpx Mx —> MX
r,x > h(f(r)z),

eine universelle Quasi-Hashfunktion. Ist A eine universelle Hashfunktion, so ist hy auch eine universelle
Hashfunktion. d

Beweis: Sei ¢ := #f71(r) mit r € M},
Zunichst wollen wir die Aussage fiir den Fall beweisen, dak h eine universelle Hashfunktion ist.

Seien z,z' € Mx, z # &' und a,a’ € My, sowie R eine auf Mp gleichverteilte Zufallsvariable. Weil # f~!(r)
unabhéingig ist von r € Mg, ist f(R) auf Mg, gleichverteilt.

P(hs(R,z) =a A hy(R,2") =d') = P(h(f(R),z) =a A h(f(R),2") =d) S (#Mg) 72,

also ist hy eine universelle Hashfunktion.

Sei nun h eine universelle Quasi-Hashfunktion.

Nach Definition 3.4 existiert eine Familie von Bijektionen fz: Mg — M;Z" T € Mg, so dafs

]N’L: (Mf(R)XMR)XMX — MAI)A(

(r,7), x —  fr(h(r,x))
eine universelle Hashfunktion ist. Nach dem bereits bewiesenen Teil des Lemmas ist fiir f(r,7) := (f(r),7)
auch
hf: (MRXMR)XMX — } NM;»(
(r,7), = — h(f(r,7),z)

eine universelle Hashfunktion. Und wegen

h(f(’l“, F),m) = f;(h(f(?"),l’)) = f;(hf(’l“),l’)

ist auch
hy: (MpxMpg)x My — M,
(r,7), — fi(hp(r),2)
eine solche. Damit ist nach Definition 3.4 hy eine universelle Quasi-Hashfunktion. u

A.4 Zu Kapitel 4

A.4.1 Lemma 4.2

Lemma 4.2: Komposition von Symbolgewichtungen

Es sei X' eine Familie von Quellen und «, 1, ...,z, € ¥%. Dann ist
n
nX(a;xl ceTp) > Z nX(axl e Ty—15Ty).
v=1
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Ist eine Seite dieser Ungleichung definiert (d.h. nicht L), so ist es auch die andere. O

Beweis: Sind alle n¥ (a1 ...z,_1; x,) (v =1,...,n) definiert, so folgt aus folgender Rechnung die zu bewei-
sende Gleichung und die Definiertheit von n? (a; o1 ... x,):
Y (a;zy ... x,)

= —log sup P(X|a‘+1 . -~X|a\+|x1...xn\ =T1...Tp | X1 . 'X\Of| = a)
Xex

n
= - IOg sup H P(X\awl...zl,,1|+1 v X|azl...wy,1\+|wy| =Ty | Xl .- -X\awl...zy,l\ = Qry .. -'ru—l)

XEXI/:l
n
Z - IOg H sup P(X\awl...zl,,1|+1 v X|azl...wy,1\+|wy| =Ty | Xl .- -X\awl...zy,l\ = Qry .. -'ru—l)
L XeXx
v=1
n
X .
= E Nt (azy ... xy_152,).
v=1

Ist n* (a; z1) undefiniert, so sind dies auch alle anderen Vorkommnisse von 5% in der zu beweisenden Unglei-
chung, somit sind beide Seiten undefiniert.

Ist n* (o;x1) definiert, aber ein % (axy ... 7, 1; ,) = L, so sei vy > 1 der kleinste Index mit dieser Eigen-
schaft. Dann ist

P(Xl---X\awl...zl,Ofll :aml...x,,o_l) =0, P(Xl...X|a‘ :Oé) >0, (27)
also
1, v<y -1,
nx(aml...my,l;wu) =00, v=vy—1,
=1, v>py-—-1,
womit sich
an(aml c Ty 15 Ty) =00 (28)
v=1
ergibt.

Aus (27) ergibt sich
N (a; 21 ... 2p) = 00,

zusammen mit (28) folgt daraus die Ungleichung und die Definiertheit beider Seiten derselben.

A.4.2 Bemerkung Seite 22

Definition 4.5: Konditioniert links-zeitinvariante Familien von Quellen
Es sei X(") wie in Definition 4.3.

Eine Familie & von Quellen heiflt konditioniert links-zeitinvariant, wenn fiir jedes X € X', jedes n € Ny
und jedes z € ¥% mit P(X;...X,, =z) > 0 auch

XM|(X).. Xp,=z)e X
gilt. O

Auf Seite 22 wurde angemerkt, daf es in den Definitionen von Links-Zeitinvarianz (Definition 4.3), Rechts-
Zeitinvarianz (Definition 4.4) und konditionierter Links-Zeitinvarianz (Definition 4.5) geniigt, eine Erfiillung
der Bedingungen fiir den Fall n = 1 zu fordern (statt n € Ng). Fiir Links- und Rechts-Zeitinvarianz ist dies
offensichtlich, fiir konditionierte Links-Zeitinvarianz zeigt man es wie folgt:
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Beweis: Es sei X' eine Familie von Quellen, so dafs fir jedes X € X gilt: Ist z € ¥y mit P(X; =) > 0, so
ist auch
XX, =2) e X. (29)

Zu zeigen ist nun, daf fiir n € Ng und « € £% mit P(X;...X,, = z1...2,) > 0 auch
XWXy, . Xp=a21...2,) €X

gilt.

Hierzu bedienen wir uns einer Induktion iiber n. Der Induktionsanfang n = 0 ist klar. Sei n > 0. Aufgrund
der Induktionsvoraussetzung gilt

YV i=X"I)(X, . . Xy =a1...2p_1) €EX

und somit ist
(29)

XXy Xy =a1...2,) =YD|(Y] =2,) € X,
da wegen P(X;...X,, =x1...2,) > 0 auch
P(Yi :l'n):P(Xn:.Z'n | X... X1 :1'1...11,'»”,1) >0

gilt. |

A.4.3 Bemerkung Seite 22

Auf Seite 22 wurde weiterhin angemerkt, daf fiir jede Teilmenge der drei Eigenschaften Links-Zeitinvarianz,
Rechts-Zeitinvarianz und konditionierter Links-Zeitinvarianz eine Familie von Quellen existiert, die genau diese
Teilmenge erfiillt. Dies soll hier mit Beispielen belegt werden.

Es seien ¥ := {0,1,2,3,4} und die Zufallsvariablen A;, B;, C, D;, E, E,, E;, (i > 0) mit Werten in XN wie folgt:
e A; konstant 20,
e B; konstant 3¢1°°,

o C gleichverteilt auf {0°°,1°°} und

o D; gleichverteilt auf {4¢20°°,4/31°°}.

Dann gilt:
Familie links-zeitinv. | rechts-zeitinv. | kond. links-zeitinv.
{A:} nein nein nein
{Dy, Ao, By} nein nein ja
{4;:i>1} nein ja nein
{4y, By, D; :i >0} nein ja ja
{C, Dy} ja nein nein
{Ao,Al} ja nein ja
{C} ja ja nein
{Bo} ja ja ja

Zum Uberpriifen helfen die folgenden Gleichungen (mit i > 1 und X! wie in Definition 4.3):

A = 4, AN = 4,4, By" = By, B = B;_y,

(
i
c = ¢, EV = F, ny’ = ¢, DY =Dy,

63



A BEWEISE

und
A (A0 = 0) = Ay, BV |(Box = 1) = By,
DYV |(Dg 1 = 2) = A, DYV |(Do1 = 3) = By,
A§1)|(Az,1 = 2) = A1, D§1)|(Di71 = 4) = D1,
CM|(Cy =0) = Ao, cW|(C, = 1) = B, -
A.4.4 Lemma 4.6
Lemma 4.6: Verschiebung von Symbolgewichtungen
Es sei X' eine Familie von Quellen, a,as,z € ¥% und n € Ng.
Ist X konditioniert links-zeitinvariant, so gilt, falls % (o as; x) # L:
n¥ (ag;x) < n¥(arag; x). (5)
Ist X' rechts-zeitinvariant, so gilt fiir n% (as;x) # L:
7 (azie) > min 1*(aas o). (©)
aeXy
Ist X rechts-zeitinvariant und konditioniert links-zeitinvariant, so gilt in (6) sogar Gleichheit. O
Beweis: Zunichst zeigen wir (5). Wir kénnen o.B.d. A. |a;] = 1 annehmen. Sei X € A beliebig mit

P(X1... Xjayas| = 102) > 0und YV := XD |(X; = ;) € X. Dann gilt

P(X\oqaz\Jrl ---X\alazwl = | X1 "'X\oqazl = ala?)
:P(X(l) X(l) |:.17|X1(1) X(l)‘:a27 Xlzal)

[az|+1 " |aza " as
= P(Yjay 141+ Yiaga| =7 [ Y1 ... V]ay| = )

< sup P(X[py 1 Xlppo =@ | X[ X[y = )
X'ex

Daraus ergibt sich

77X(041062;$) = _log;u%P(X\a1a2|+1 .. 'X\a1a2w| =T | Xi.. -X\a1a2| = 041042)
S

> —log sup sup P(X|pyi41 - Xaga) =T | X1 Xpy = a2)
XEX X'eX

! ! ! !
= —log)(sPE%P(X‘a2‘+l...Xlazm‘ =z | Xj... X, =a2)

0™ (as; @),

womit (5) gezeigt wére.

Um (6) zu zeigen, kénnen wir uns wieder o. B.d. A. auf den Fall n = 1 beschréinken. Sei diesmal X € X beliebig
mit P(X1...X|a, = a2) > 0. Weil X rechts-zeitinvariant ist, existiert ein X~ mit (X"1)®) = X. Wir
erhalten dann:

P(X\Oé2|+1"'X\oz2x| =2 | X1...X|a2‘ = az)
-1
= Z P(Xl( ) = «, X‘a2|+1 X‘ale =x | Xl X|012‘ — Oég)

aEXy
-1 -1
=Y PX{V=a| X Xy = a2)  P(Xjagisr - Njage =2 | X1V =0, Xioo Xy = )
aEXy
S né%x P(X|a2‘+1 ...X|a21‘ =T | Xl(_l) = «, Xl...X|a2‘ = Oég)
aeXx
_ (1) (-1 _ (—1) (-1) _
= ané%); P(Xlaa2|+1...X‘aa2w| =z | X; "'X|04042| = aqo)
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Daraus ergibt sich

’I]X(Oég;ﬂf) = —IOg sup P(X‘a2‘+1...X|a21‘ =T | X1 ...X‘a2| = Ozg)

Xex
g (-1 (-1 _ (1) (-1 _
> —log;g% Iax P(Xlaa2|+1 R | X3 Ko = aas)

! ! _ ! ! —
> —log sup max P(X|y0, 141 Xjaage] = | X1 -+ Xjgay| = a2)
X'ex aEX y

X .
nax 1) (az; ),

also ist (6) wahr.

Ist X rechts-zeitinvariant und konditioniert links-zeitinvariant, so gelten (5) und (6) zugleich, es folgt

© O
7% (a2;2) > min n¥(aaz;z) > min n¥ (az;z) = 1" (az;2),
aEE; aEE}

also gilt in diesem Fall Gleichheit in (6). [ |

A.4.5 Satz 4.8

Definition 4.7: Adaptiver Hash-Extraktor EZ;”

Es sei n eine Symbolgewichtung, n € N, m : R>qU {oo} = Ny, weiter Mg, ¥ und X endliche, nichtleere
Mengen, und h eine Familie von Funktionen

hi s Mg x ™ — XM, (m € M :=m(Rx>o U {o0}) \ {0}).

Dann ist der adaptive Hash-FExtraktor

—=n,m , y* N * N
EppsrusN — 3r, Uk,

durch folgende Konstruktion definiert:
Sei X € ¥* UXN und R € Mg, sowie

B = X(i—l)n+l e Xin; falls |X| Z in,
B sonst,
hm(n(Bl...Bi,l;Bi))(RaBi)a falls B, ;é J_, ’I](Bl .- -Bi—l; B,) ;é 1
X; = und m(n(By ... Bi—1; B;)) > 0,
A, sonst,
und schlieflich
EZ:,T(R,X) = X1 Xo O

Satz 4.8: Adaptive Extraktion

Es sei X eine Familie von Quellen iiber ¥, < n¥ eine Symbolgewichtung iiber ¥, I € N, n € N,
m : R>o U {oo} = {0,...,n}, weiter Mg, Mg, ¥ou endliche, nichtleere Mengen und h eine Familie von
universellen Quasi-Hashfunktionen

hi: Mg x " — ¥ (m € M :=m(R>oU {oo}) \ {0}).

Auferdem sei R eine auf Mg gleichverteilte und von X, S unabhéngige Zufallsvariable, S eine Zufallsva-
riable mit Werten in Mg und X € X.

Seien ferner

X =2PMR, X ... X))
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und
loge := % sup (m(k)log#Zout — k) + log(l + 1) + log|l/n] + log #Ms + 5 log #M — 1 (7)
kE]RZO
m(k)#0
Dann ist P(|X| <) =1, und X ist e-zufillig unter Kenntnis von R, S, | X]|. O

Beweis: Da wir nur X; ... X, verwenden, kénnen wir o. B.d. A. annehmen, daf | X| <, also X; ... X; = X.

Es seien X,-, B; wie in Definition 4.7. Allerdings handelt es sich nun um Zufallsvariablen, da auch X und R
welche sind.

Setze dariiber hinaus M := m(Rso) \ {0}, sowie k(1n) := inf{k € Rxo : m(k) =} (h € M) und

M. m(n(By...B;_1; B;)), falls B;# Lund n(By...B;—1; B;) # L,
e 0, sonst.

Da maxm(Rso) < n,ist L= |X]| = ¥, n|Xi| € Xien|Bil = |X| < 1.

Wir setzen abkiirzend:
Ci a.m — (Ml = ’ﬁl, B1 .. -Bi—l = a) (Z S N,Oé S En(iil),’ﬁl S M U {0}),
Siaum = P(My=m | By...Bi_1 = a) (i € N,a € "N i e MU{0}).

Mit i € N, a € 2= 47 € M rechnen wir nun weiter:

Im Falle n(a; z) < k() gilt m(n(e; z)) # m, also P(B; = ¢, By ...Bi_1 = a, M; =) = 0, und somit ist,
falls definiert,
P(B,'ZZ‘, Mi:m|Bl...Bi,1:Oé):0, (30)

und im Falle n(a; ) > k() ist
P(B,:J}, Mlzm | Bl---Bi—l - )
<PBij=xz|By...Bi_i=aqa)< 9-n%(a2) < 27 nlez) < 2—15(7”n)7 (31)
falls definiert.
Dann ist fiir P(Cj4,m) > 0, m € M:

Hoo(Bz | CLa,ﬁL) = —;}é%)ﬁ IOgP(BZ =T | MZ :’I”T’L, Bl ...B,;l = Oé)
= —m%x10g5;émP(Bi:m, M,=m|B;...Bi_1 = a)
zex™ 7

= 10g5i7a7m — ;Ié%)s IOgP(Bl =, M,' =m | Bl .. -Bz‘—l = a)

(30,31) .

> k() + 1og d;,a,m- (32)

Fiir ih € MU {0} seien U; 5 auf £™  gleichverteilte Zufallsvariablen, wobei U; ;7 unabhingig sei von R, S, L,

out

By, Xi, Xy, Mi, Uy ((@',0) # (i,m)).

Ist P(Ciam) >0, m € M, so gilt mit dem nach C; o » konditionierten Wahrscheinlichkeitsmaf:
e Essind (B;,S,L), R und U; 5 unabhingig,
e esist X; = hy(R, B;) und somit X; € X7

U;.m ist gleichverteilt auf X7

R ist gleichverteilt auf Mg,

(32)

2.6 )
es gilt Hren(B;) > Hoo(B;) > k(1) + 10g d; o i,
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e da L <!, nimmt (S, L) nur Werte aus Mg x {0,...,l} an,

e und schlieflich ist Az : " — X7, eine universelle Quasi-Hashfunktion.

Somit kann hier das Leftover Hash Lemma (Satz 3.6) angewandt werden, und wir erhalten mit b := | L] im
Falle m € M:

SD(SJLJR7XZ7 SaLaRa Ul,fn) = SD((SaL)aRa h’fn(RaBl)ﬂ (S7L)7R7 Ul,fn)

3.6 ~ .
< LRM(+ 1)\ 50, - 27RO —lo8 e

< bl gMEsT O (L (M 1og #Zoue — k(1))
@ exp, (4 sup keRs, (M(K) log #Xout — k))

m(k)#0
Da .
sup (m(k)log #Xout — k) >  lm  (m(k)log #Xout — k) = mlog #Xous — k(m),
k€R>0 k—k(m)
m (k)70 kem™ ' ({m})
k>k(m)
folgt
SD(S,L,R, X3 S,L,R, Uy ) < eb™ M2 5,2/ (33)

Im urspriinglichen Wahrscheinlichkeitsraum (ohne Konditionierung nach C; o 5) lautet (33):

SD(S,L, R, Xi; S,L, R, Ui, || Ci.am) < b M V257112 (34)

Fir P(By ...Bj—1 = «) > 0 gilt dann weiter

SD(S,L,R, X;; S,L,R, Ui, || Bi-..Bi_1 = a)

2.9(1) .
< SD(SaLaRleaMla SvaRan,MivMi || By...Bi 1 = Oé)

LN P(M; =1 | By...B;_1 =) SD(S,L,R,X;; S,L,R,Ui || Ci.aum)
meM + P(Ml =0 | B1 .- -Bi—l = a) SD(S,L,R,)\, S,L,R,)\ || 01‘70[70)

= > diam SD(S,L,R,Xi; S,L,R, Ui || Cian) + P(M; =0|By...Bi.y =a)-0
(34) MEM S

< Z 6i,o<,'rh € bt #M_1/2 5,'7047771
meM

= bt gMT2 N (8101
meM
CiU b L HEMTZY Z Oisa,im V Z 1
memM memM
eb T HM Y21\ SEM
= eb . (35)

A

IN

Hierbei bezeichnet CSU die Cauchy-Schwarzsche Ungleichung.

Wie setzen nun U := Uy, Us s, - - -, dann ist U nach Lemma 2.12 perfekt zuféllig unter Kenntnis von R, S, |X|
Ko6nnen wir noch

SD(R,S,L,X;...Xp; R,S,L,Usps, ... Uy, || Bi...Bi 1 =a) < (b—i+1)eb ! (36)
fir i = 1,...,b und alle @ € X" mit P(B; ... B;_; = &) > 0 zeigen, so folgt

SD(R, S, |X|,X; R,S,|X|,U) =SD(R,S,L,X1X5...; R,S,L,Uy s, Us.ay - -.)
=SD(R,S,L,X,...Xy; R, S,L,Us s, ... Upaz,)

(36)
<(b-1+1eb ! =g,
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und der Satz ist bewiesen.
Also wollen wir zuletzt (36) mit vollstandiger Induktion {iber absteigendes i zeigen.

Fiir den Induktionsanfang i = b lautet (36):
SD(R,S,L,Xy; R,S,L,Upps, || Bi...By 1 =a)<eb !,

was genau die Aussage von (35) mit ¢ := b ist.
Es sei nun 1 <4 < b und wir nehmen an, (36) sei wahr fiir 7 + 1.

Wir setzen abkiirzend U := Uiy1,m -Up,n,, dann ist U nach Lemma 2.12 perfekt zufillig unter Kenntnis

i1

von R, S, L, X,,, M,,, B;, U, (v < ).

Weiter definieren wir neue Zufallsvariablen Uy, gleichverteilt auf ¥F ¢ und unabhéngig von R, S, L, X,,, M,,
U, Uy,m, By, und erhalten

SD(I%7 S,L,Xl‘XH_l .. -Xb; R,S,L,X,’U || Bl - -Bi—l = a)
(1) N ~ ~
S SI)LR,S,L,E%,)qu...)(M ]2,S,L,l%,tf||£ﬁ...l%,1::c@
"L SD(R,S,L, Xiy1 ... Xp; R,S,L,U || By ... Bi_1B; = ax)

TeEX™

(36) 1
< (b—i)eb™t, (37)

sowie

SD(R,S,L,X;U; R,S,L,Ui U || By...B; 1 =a)
(1) A ~ ~ ~ ~
<'SD(R, S, L, X:, U, |U|- R,S,L,Uiri,,U,|U| || By ... By = @)

29(4) ZP |U| L | Bl i :a)
#eNo  SD(R, S, L X,-,U R,S,L,Ui ;U || |U| = p, By...Bi_y = a)
= > P(U|=p|By...Bi 1 =a)

#eNo  SD(R, S, L X,,U(u R,S,L,Us a1, Uy 1 10| =, Bi...Bisy = @)
LN P(U|=p| Bi...Bioy =a)

#eNo  SD(R, S, L, X;; R,S,L,U,-,Mi |1U] =p, By...Bi_y =a)
“ZYSD(R, S, L, X;,|U|; R,S,L,Uin,,|U||| By...Bi_1 =a)
= SD(R, S, L, X;, (L — |X;| — ca);

R,S,L,U; m,, (L —|Uin;| —¢a) || B1-..Biz1 = @) fiir geeignete ¢, € Ny

2.9(1) A
< SD(R,S,L,X,’; R,S,L,Ui’Mi || Bl...Bi,1 :Oé)

(35)
< ebt, (38)
und schliefllich

SD(R,S,L,X;...Xp; R, S,L,Uins, ... Ups, || Bi...Bio1 = a)

(3) A A N A~
<"SD(R, S, L, XiXss1 ... Xp; R, S, L, XU || By...Bi1 = @)
+SD(R,S,L,X;U; R,S,L,Ui ;U || By...Bi 1 = @)

(37,38)

< (b—i)eb ™t 4eb™t = (b—i+1)eb . [

A.4.6 Korollar 4.9

68



A.4  Zu Kapitel 4

Korollar 4.9: Adaptive Extraktion

Es sei X eine Familie von Quellen iiber ¥, 7 < 7% eine Symbolgewichtung iiber ¥, 1 € N, n € N, € > 0,
weiter Mg, Mg endliche, nichtleere Mengen und h eine Familie von universellen Quasi-Hashfunktionen
hi : Mp x £ — {0,1}™ (= 1,...,n). Weiter sei R eine auf My gleichverteilte Zufallsvariable, S eine
Zufallsvariable mit Werten in Mg und X € X.

Wir setzen
c:= —2loge +4logl —logn + 2log # Mg,
07 (k —-cC S 0)7
m(k) =14 k—c], (0<k-c<n),
n, (k—c>n),
X = :Z:;Ln(R,Xl .. .Xl),
dann ist X e-zufillig unter Kenntnis von R, S, |X]|. O

Beweis: Nach Satz 4.8 ist X &-zufillig unter Kenntnis von R, S, |X| mit

logé =1 sup (m(k)log#Zouw — k) +log(l + 1) + log|l/n] +log #Ms + & log #(m(Rxo) \ {0}) — 1. (39)
keR
m(k)?é%
Wir miissen nur zeigen, daf € > €.

Anhand der Definition von m {iberpriift man, daf m(k) —k < —c fiir m(k) # 0, und wegen #Xou, = 2 erhalten
wir

c
: k:;}io (m(k)log #Xout — k) < —5 = loge — 2logl + £ logn — log #Ms. (40)
m(k)#0

Fir I > 1 gilt [ + 1 < 2I, daher ist auch
log(l 4+ 1) <logl+ 1. (41)

Weiterhin ist
log| L] <log L =logl —logn. (42)

Und schlieflich wegen m(R>o) = {0,...,n}
3 log #(m(Rx0) \ {0}) = 5 logn. (43)
Wenden wir (40-43) auf (39) an, so erhalten wir

logé <loge — 2logl + % logn — log #Mg
+logl+1+logl —logn + log #Ms + 3 logn — 1
=loge,

also e > &. [ |

A.4.7 Lemma 4.11

Lemma 4.11: Rate einelementiger Quellen
Sei X eine Quelle iiber ¥ und &X' := {X}. Dann ist

|z
(o x) = ZUX(OéJ?l CTy—1; Ty) (a,z € X%) (8)
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und, falls H(X) existiert,
R(X) = R(X,X) = H(X). O

Beweis: Wir schreiben kurz n := n%. Da #X =1, ist

n(a;x) = —IOgP(X‘a|+1...X‘aw| =T | X1 ...X‘a| = a)
||

= —log H P(X|a‘+,, =Ty | X1 . --X|a\+u71 = a1 ...x,,_l)
v=1

||

= — ZlogP(XMH_,, =2, | X1 . Xjgj4v—1 =Ty ... 2T, 1)

v=1
|z
a1 :
= E n(axy ... xy_1;,),
v=1

womit (8) gezeigt ist.
Weiter ist

Lt/n]
R(X, X)*2 lim lim > En(X1 ... X-1)n; X(—1yns1 -+ Xin)

i=1

2 lim LEn(\; X, ... X))
l— o0

= lim ! P(X,...X; = :
Jm 7 ;l (Xy 1= z)n(\; z)

IS

2 lim§ > P(Xy... X, =2)log P(X;...X; = z)
l—o0 iyt

=2 lim +H(X;...X;) £ H(X),
l— o0

und direkt nach Definition 4.10

X)= inf R(X' X)=R(X,X). |
R(X) X,IEH{X}R( ,X) = R(X, X)

A.4.8 Gleichung (*) aus Abschnitt 4.3.3

In Abschnitt 4.3.3 haben wir behauptet, daf fir z € £* \ {\}

sup 3wy (@) logpy = o 3 22 1og 2o ().

peﬂ{? (762 (762 |$| |$|

Beweis: Dividieren wir auf beiden Seiten durch |z|, so erhalten wir fiir geeignetes a € RT die dquivalente
Gleichung

sup Z aylogp, = Z aqloga,. (44)
PERY ;cx cey

Ist diese gezeigt, so folgt die zu beweisende Aussage.
Fiir a; = 0 ist
sup Z a,logp, = sup Z aslogp, = sup ) Z ag log po,
PERT ;3 P€R§ o€ PR ew\ (i}
Di=

da fiir p; > 0 der Term ) _a, logp, vergrofert werden kann, indem wir p; := 0 setzen und p; mit a; # 0
entsprechend erhohen. Wir kénnen also einfach 0.B.d. A. i ¢ ¥ und a, # 0 fiir alle 0 € ¥ annehmen.
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Da lim,, 0 a; log p; = —oo, liegt existiert eine globale Maximalstelle und liegt im Inneren von RY, wir kdnnen
dann die Multiplikatorenregel von Lagrange anwenden. Nach dieser gilt, da die Ableitung der Nebenbedingung
konstant 1 ist, und somit nirgends verschwindet, fiir die Maximalstelle p € R} und geeignetes A € R:

01 o a'_ .
0 92 aslogps O3 p )
Opi Opi
— 0=2 4 (iex)
pi
— a; = —Ap; (Z S E)
Und wegen der Normierung von p und a folgt daraus p = a, damit ist (44) bewiesen. |

A.4.9 Schitzer fiir die Entropie (Abschnitt 4.3.3)

In Abschnitt 4.3.3 haben wir behauptet, daf

ein asymptotisch erwartungstreuer Schitzer der Entropie unabhéngig identisch verteilter Zufallsfolgen sei, also
fiir eine solche Folge X gilt .
lim EA(X; ... X,) = H(X).

n— oo

Beweis: Es sei € > 0.

Da —p, logp, stetig in p, ist, existiert ein §, so dak
€
24

o = fo(@)| <6 = |pslogps — fo()log fo(2)] <

mit p, := P(Xo = 0), fo(z) := wy(z)/|x|.

Weiter existiert nach dem schwachen Gesetz der groften Zahlen ein ng € N, so daf fiir n > ng gilt:

P(|po_fa(X1-- )|<6)
N—_———

::Fé")

13
= 24y

Weil f,(z)log f,(z) € [0, 1], hat — EF" log F(") fiir n > ng damit die Form

EF™log F\" = P(|py — F\™| > &) E(F! >1ogF(”> | lpo — FS™| > 6)
+ P(|p0 - F(")| < 8) BE(F{™ log F{™ | |py — Fi™| < §)
2#2 7 + hS (45)

mit geeigneten

h €10,1]  und |k — pologps| < —= 2#2 (46)
Dies fiigen wir fiir n > ng zusammen zu
[EA(X ... X,) = H(Xo)|Z Y (s5shf +h5) = > pologps
oEX oEY
< Z‘Q;Eﬁt{ +Z|h2 pal()gpa|
oex oEX
(46)
<e
Also ist
lim EA(X;...X,) = H(Xp) = H(X) |
n—o0
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A.5 Zu Kapitel 5

A.5.1 Lemma 5.4

Lemma 5.4: Zeitinvarianz von CHMM-Familien
Sei C ein CHMM. Dann ist X€ links-zeitinvariant und konditioniert links-zeitinvariant. O

Hilfsatz A.25: Einschrinkung von Gleichverteilungen

Es sei U auf [0, 1)No gleichverteilt. Weiter sei M C [0,1)No eine meftbare Menge mit P(U € M) > 0, und
Z eine auf M gleichverteilte Zufallsvariable. Dann existiert eine mefbare Abbildung

f:00,H)No — [0, 1)Ne,
so dal f(U) die gleiche Verteilung wie Z hat. O

Der Beweis zu diesem Hilfsatz findet sich auf Seite 75.

Beweis (zu Lemma 5.4): Es sei X4 € X¢. Wir beweisen zunichst die Links-Zeitinvarianz. Hierfiir ist
zu zeigen, daf fiir jedes n € N ein Adversary A € Adve existiert, so daR X4 = (X)) (wir verwenden
die Notation aus Definition 4.3). Es geniigt hierbei, den Fall n = 1 zu untersuchen, siehe die entsprechende
Bemerkung auf Seite 22.

Es seien TZA, TA, XZA, ;4, R, R' wie in Definition 5.3, wobei wir allerdings verschiedene Wahrscheinlichkeits-
mafse betrachten werden, und nicht in allen ist R’ gleichverteilt.

Der Kiirze halber schreiben wir R/, fiir (R}, )52, und 7 fiir (r;41){2, d.h. der Index + entfernt das jeweils
erste Glied dieser Folgen.

Wir werden die folgenden Wahrscheinlichkeitsmafe betrachten: In P sind R und R’ unabhiingig und gleich-
verteilt (wie in Definition 5.3). In Pg—; ist R gleichverteilt und R’ konstant ¢. In PR’+:t sind R und R,
unabhéngig und gleichverteilt, und R/ konstant ¢{. Man kann sich diese Wahrscheinlichkeitsmafe als nach

R' =t bzw. R, =t konditionierte Wahrscheinlichkeitsmafe vorstellen, jedoch ist dies formal nicht korrekt, da
P(R'=1t) = P(R!_ =t) =0, und somit P(-|R' =t) und P(-|R! = t) undefiniert sind.

Es existieren nun mefbare Funktionen g, g; : [0,1) x [0, 1)X¢ — Q¢ und Z; : [0,1) x [0, 1)Ne — Y mit

1
/ §(do(ro,m+) = g0, G1(ro,7+) = @1, &1(ro,74+) = x1) dro = Ppr—p, (@ = g0, QF = @1, Xi' =x1) (47)
0

fiir alle go,q1 € Qc, 71 € X¢ und 74 € [0,1)No. Diese Funktionen sind so konstruiert, daf sie die Verteilung
von Qf', Qf', X{! besitzen, wenn rq auf [0, 1) gleichverteilt ist.

Wir kénnen mit diesen Hilfsmitteln nun den Adversary A definieren: Es seien fiir r € [0,1)No i € N, q,q; € Qc
und z; € X¢

A*(r) = (0(g = qu(TO’T“‘)))quc’ (48)

und

A(Z',T,q, (QO7 s :Qi—l), (JjOa B a'ri—l))
= A+ 1,74,4, (Go(ro, 1), 41 (o, 74), a1, -5 @i 1), (B1(ro, 74 ), 1,0 oy i 1)) (49)

Es ist offenbar auch A € Adve. Dieser Adversary ist so konstruiert, daf er zu Beginn das Anfangsverhalten
von A und X4 mittels gy, ¢i, #; simuliert und dann jeden Aufruf an A weiterleitet, wobei er die Folgen der
bereits erreichten Zusténde und ausgegebenen Symbole um gy und Z; erweitert, so daf es A immer scheint, wir
seien schon um eine Stelle weiter in der Ausgabe der Quelle fortgeschritten. Der Effekt ist, daf der Ausgabe
von X4 das erste Glied fehlt. Dies wollen wir nun zeigen:
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Esist fir i € N, g, € Qc, z, € X¢:
PR’:T(QS‘---Q{‘:(]O---%’: XiAXZA:xl.rZ)

i
= Pp—(Q% = q) HPszr(Qf} =q, X)=2,Q8...Q; a 1=q0- -1, X1 . XA =Ty Ty )
v=1
i ~
?(A*(T))qo H(A(ervql/—la(q07"'7ql/—1)7('r17"'7'rl/—1)))

v=1

Tvyqv
i
(49) ¢ T 5 5 -
= (A%(r))go H(A(V + 1,74, qv-1,(Qo(ro, 7+), G (ro, 74), 415 - -+, Qw—1), (371(7°0;7"+);371;-~-;ﬂ7u71)))quy
v=1
= (A*(T))qo H PR’*m, 1/+1 =dqv, X,1,4+1 =Ty | Qo . QA = (TO:T+) ql(’rOaT-‘r):qlv"'qu—lv

X1 . XA Z1(ro,m4), a:l,...,a:,,,l)

= (A*(’I“))qo PR’:T+(Q§---Q?+1 =4q1---4;, XéA Xzf}kl =T ...-25
| Q8 = dGo(ro,7+), Q' = d1(ro,r+), X7 = d1(ro,74))

(2)5((]0 TO;”qu Z PRI—r+ . Qﬁklququ X?X;ilzmlml
41 EQ " " M
qozflez(ic | QO = q(l)v Ql = qi, X1 = CU’1) .
§(g0 = qo(ro,4+); ¢ = qu(ro,m4), =y = #1(ro,74)). (50)
Weiter ist

PR;:”(QOA...Q;A:qg...qi, XA XA = .1y)
1 - - . -
:/ Pr(Qf...Q  =qo...qi, X{'.. . X =21 ... 2;) drg
0

(50)
= Z PR’=T+(Q2A---Q£|-1 =q1.--Gi, X2A-~-X{j_1:$1...$z'
/’ IGQ u " \
qow’lqlEEcc ) | Q) =a, Qf =4qi, X{' =4) -
/ 6((](,) = (jO(TO,T+), qo = q1 = (jl(’l"o,’l“_t,_), :Ull = '%1(’1“0,7“_;,_)) dro
0

(4n A A
Z Pri— ( Q.. Q,H:(h.--qz', X X =22

10,41 €Q A A
(?Tlllezcc |Q0 ZQ67 Ql :qi, X1 :Jfll) .
Prrr, (QfJ4 =g, Q' =d = a0, X{' = z})
:PR’=T+(Q14Q£|»1:q0qz; XZAX2A+1:37137@) (51)

Damit ist auch
P(Q()a...in:qo...qi, X{a...X;a:ml...m,-) :P(Q‘f...Qf+1 =qo-..-q, X?...X{}H :ml...mi).
und insbesondere
PX{ . XA =z a)=P(X$ . XA =) = P(XHNM XYY =2 ). (52)

Damit ist X€ als links-zeitinvariant bewiesen.

Nun wollen zeigen, dafs &’ ¢ auch konditioniert links-zeitinvariant ist, d.h. daf es ein A € Adve gibt, so daf
XA = (XNHM|(XA . XA =& ... %y,), sofern P(X{*... XA = &, ...%,) > 0. Auch diesmal kann man sich
auf den Fall n = 1 beschrianken, vergleiche die entsprechende Bemerkung auf Seite 22.

Es sei wieder X4 € X€.

Im durch die Bedingung X{! = Z; gegebenen Wahrscheinlichkeitsmaf ist (Rg, R1, R') auf einer Teilmenge von
[0, 1)No x [0, 1)No gleichverteilt, da X' deterministisch von (R, Ry, R') abhingt und (R, Ry, R') gleichverteilt
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war. Somit existiert nach Hilfsatz A.25 eine meRbare Abbildung f : [0,1)Ne — [0,1)No, so daf f(U) die gleiche
Verteilung wie (Ro, Ry, R')|(X{* = ;) hat, wobei U unabhiingig von R, R’ und auf [0, 1)N¢ gleichverteilt sei.
Der Kiirze halber schreiben wir noch f'(r) := (f(r):)2,.

Dann seien g, 1 und Z; derart, daf fiir Pri—, (XlA = &) > 0 die folgende Gleichung erfiillt ist:

/ d(Go(ro,7+) = qo, @1(r0,7+) = q1, Z1(ro,74) = 71) dro
= P(Ry,R1,R")= f(r+)(Q0 qo, Qi4 =q, X{4 =) (53)
fiir alle go,q1 € Qc, 1 € ¢ und ry € [0,1)No,

Wir definieren nun den Adversary A: Es seien fiir r € [0,1)N0, i € N, ¢,¢; € Q¢ und z; € X¢
A*(T) = (5((] = ql (roa f(r+))))quC7

und

A(i7T7Q7 (q07 s :Qi—l), (JjOa v a'ri—l))
= A(Z + ]-7fl(r+)7q7 ((70(7“0;7“+);(71(7“0;7“+);Q1; e 7qi71); (il(r07r+)7m17 e Jmifl))'

Dieser Adversary A unterscheidet sich vom oben definierten A dadurch, daR er zusitzlich zu dem, was A tut,
R' und Ro, R; in der Simulation nicht als gleichverteilt annimmt, sondern als entsprechend der Bedingung
X{ = # verteilt. Dies ist moglich, da A die Zufallsvariable R’ beliebig abbilden kann, bevor sie an den
simulierten A weitergegeben wird, und weil Ry und R; nur in der Simulation vorkommen. R, R3, ... miissen
nicht modifiziert werden, da sie von X' unabhingig sind. Formal sieht dies wie folgt aus:

Ganz analog zur Herleitung von (50) erhalten wir

PR/:T(QA.-'QA: 0-.-qi, XiA"'XA:xl.-.xi)
=d(q0 = q1(ro,7+)) Z Pri—; (7,+ QQ...Qﬁqul_”qi, X?---X{?HZCUL--:U@'
141 €EQ
q?z'lflezcc | QOA = q(l)a Qf = qi; XiA - iIJ’l) .
6((1(,) = (jo(To,T+), qi = (jl(rmr-i-), CUll = il(’l“o,T_;'_))_ (54)

Analog zu (51) folgern wir

PR;:”(QOA?...QA:qO...q,-, Xfi...XA:atl...a:,-)
(5354)2 Pri_yg T+)(Q2 .. Qz+1 =q-..q, Xéq XfH =T1...%T;
q(;'flez?c |Q0 :qO; Q1 =q, XlA :-731)'
Piro. Ry ) —f(rs) (QF = @, Q1 = @i = qo, X{* = 2})
w Z P(Rle,R'):f(mr)(Qéq---Q%i1 =q...q, Xéq XfH =T1...7

/7 IEQ A A A
Hese Qi =y Q= X{=1)-
P(RolevR’):f(M) (QS‘ = q6; Qf‘ =q) = qo, XIA = 33'1)
= P(R07R17RI):f(7‘+) (le4 cee Q;i1 =qo..-qi, X;‘ .. ‘X;}H =x.. 1’2) (55)

Hierbei gilt die mit (x) gekennzeichnete Gleichheit, weil gegeben den Fall Q¢ = ¢f, Q7 = ¢}, X{* = ! das
Eintreten des Ereignisses Q3 ... QﬁH =q...q, X3 .. .X;?H = ...x; gar nicht von Ry oder R; abhéngt.

Nun haben (R, R') gegeben X{* = #; die Verteilung von ((f(U)o, f(U)1, R2, Rs, ...), (f(R')i)i>2), da X{! nicht
von Ry, R, ... abhiéingt. Damit erhilt man durch Integrieren von (55) nach r, iiber [0, 1)Ne:

(Q1 .. Qz+1 qo - - - qi, X?...Xﬁrlle...x”X{“:il)
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und insbesondere

PX{ . X =w...0)=P(X3 ... XA =2 x| X =)
=pP(xHM . xHY =gy | X = ).

Damit hat X4 die gleiche Verteilung wie (X)) |(X{* = #,), und X ist konditioniert links-zeitinvariant. B
Beweis (zu Hilfsatz A.25): Es sei

gz'(l‘l,...,l’z') = P(UE {(ti+1,ti+2,...) : (1‘1,...,.Z’Z',ti+1,ti+2,...) S M})/P(UE M)

Dann ist g; die Dichte von (Z1, ..., Z;). Man beachte aukerdem, daf
1 1
/ 9i(x1, .. wimy, 1) dt = gi—a (21, ..., Ti-1) und / gi(t)dt = 1. (56)
0 0

Wir konstruieren nun

x 1
hi(p1,...,pi) :=sup {33 €[0,1) 3/0 gi(fi-1(p1,.. ., pi—1),t)dt Spi/o 9i(fic1(P1, ... pi—1),t) dt}

und

fl(pliipl) = (hl/(pli"'apll))f,:p f(plaapl) = (hl/(pla"'apll))jo:l'

Wir wollen nun zeigen, daf g; auch die Dichte von f;(U) ist. Haben wir dies gezeigt, so sind f;(Uy, ..., U;) und
Zi,...,Z; von gleicher Verteilung und damit auch f(U) und Z.

Wir verwenden vollstindige Induktion und zeigen zunéchst, daf g; die Dichte von fi(U;) ist. Es ist fiir
xr] € [0, ].)Z

Ty 1
filpr) <21 = hi(p1) < @1 — / g1(t)dt < py / g1(1) dt'='p, (57)
0 0

und somit

P(fi(Uh) < 1) = / 5(fi(p1) < 2) dpr = max{py € [0,1]: fulpr) < 71} % / " ().

Damit ist g, Dichte von f1(Uy).

Sei nun ¢ > 2 und g;—; die Dichte von f;_1(U1,...,U;—1). Dann gilt es zu zeigen, daf g; die Dichte von
fz'(Ul, ey Ul) ist.

Hierzu sei zunéchst

x 1
hi(ay,...,a;—1,p;) := sup{xE[O,l):/ g(al,...,ai_l,t)dtgpi/ g(al,...,ai_l,t)dt}.
0 0

Damit ergibt sich fiir aq,...,a; 1 €[0,1) mit g; 1(a1,...,a;-1) > 0und z € [0,1):

x 1
P(h'(al,...,ai1,U,~)§332-):P</ gi(al,...,ai,l,t)dtZUi/ gi(al,...,ail,t)dt>
0 0

(56) fow gi(al, ceey a,-_l,t) dt
gi71(a1;~-~;ai71) '
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Dann haben wir

1 Z;
/ / gz‘(tl,...,ti)dti...dtl
0 0

1 Ti—1 T4
gi(t1;-~-;tz’)
= i1 (b1, ..., tie dt;dt;_q ...dt
/ / i 1( 1 i 1)/0 gi—l(tla---;tz‘—l) i Ali—1 1

(58)/ / Gic1(tr, . ticy) P(hi(ty, .. tio1, Us) < @) dti_y ... dty

Y PR fir (U, Uii1),Ui) < & (Fir (U, Uy <y (0 =1,...,0— 1)
((fi(Ula'-'an))USxy (v=1,...,1).

Damit ist g; Dichte von f;(Uy,...,U;) und der Induktionsbeweis abgeschlossen. ]

A.5.2 Bemerkung Seite 31

Definition 4.4: Rechts-zeitinvariante Familien von Quellen
Es sei Y (™ analog zu X (™ in der vorangehenden Definition.

Eine Familie X von Quellen heifit rechts-zeitinvariant, wenn fiir jedes X € X und jedesn € Npein Y € X
existiert mit Y = X O

Auf Seite 31 wurde angemerkt, daf eine durch ein CHMM definierte Familie von Quellen i.a. nicht rechts-

zeitinvariant ist.

Beweis: Betrachte das CHMM C, definiert durch?®®

1:0
® @)

Dann hingt X4 nur von A* ab (mit A € Adve), und es ist X¢ die Menge der Quellen X mit

P(X =01 oder X =1%) =1.

Sei X € X€ konstant 01°%°. Dann miite ein Y mit V(1) = X die Eigenschaft P(Y; = 0) = 1 haben, aber kein
Y € X€ hat diese. Also ist XC nicht rechts-zeitinvariant. [ |

A.5.3 Symbolgewichtung aus Abschnitten 5.2.4 und 5.2.5

Die CHMM aus Abschnitten 5.2.4 und 5.2.5 sind Speziallfille des folgenden CHMM C mit festem o, v1 € [0, 1],
Y+m =1

Es hat C die folgende Symbolgewichtung:
n°(a;z) = —wi(z)logy —wo(@)logo.
Beweis: Wir bedienen uns des erst in Abschnitt 5.3 eingefiihrten Satzes 5.5 und tibernehmen dessen Notation.

Da #Q¢ =1, ist
N(M) =R, = {1}. (59)

30Dateiname notrti.chmm (siehe Abschnitt B.4).
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Weiterhin entartet max 7. (M) zu
max T (M) = {t.p : to € [0,%)], t1 €[0,m], to+t1 =1, p€ M} = 7, max M, (60)

sofern max M existiert.
Damit ergibt sich nach Satz 5.5
c
. - _1
UMGEED) ogmax||pllx
mit
P=TE om0 E oN 0 TE, 00 TE (1))
Nach (59) und (60) erhalten wir daraus induktiv

||
maxP = Va; = ,y;'-’l(-T),y(L)uo(x)’

i=1

also
1(z)  wo(z)

() = —log "™ 75 """ = —wi(z) log 71 — wo() log Y. |

A.5.4 Symbolgewichtung aus Abschnitt 5.2.6

In Abschnitt 5.2.6 haben wir behauptet, daf das folgende CHMM C
[0,7]: 1

[0,7]: 0
die Symbolgewichtung
- 1 falls a = A
’I]C(Oé;.f) — Ii($) 0g7, alls « ) (Oé,$ c {0’ 1}*)
—k(aqT) logy, sonst,

hat, wobei k(z) fir x =z ... 2, € {0,1}* die Anzahl der ¢ € {1,...,n — 1} mit z; # ;41 bezeichne.

Beweis: Wir bedienen uns wieder des erst in Abschnitt 5.3 eingefiihrten Satzes 5.5 und {ibernehmen dessen
Notation. Damit sie besser zu dieser Notation pafst, formulieren wir die zu beweisende Aussage wie folgt um:

—K(x...xzj)l fallsi =1 ;
nC(wl .-..Z'Z'fl; x; ,Z']) :{ K/('rz x]) Ogr}/7 alls 1 I (1 S Z S], T € {0’1}‘7).

—K(Tim1 ...xj)logy, fallsi> 2,

In Satz 5.5 entartet nun 7. zu

TEM)={p € R : p_, =0, p}, <pe+p1-a, pEM}.

Man kann nun mit Satz 5.5 die folgenden Gleichungen nacheinander induktiv nachrechnen:

v—1
Pl,u = {p € Rgg ‘Pz, S H((s('ru = xu-‘rl) -1 + 6('77# ;é xu-‘rl) 7)’ Pl—z, = O} (V = 17 cee 7j)7
pn=1
und fiir ¢ > 2
N(lplﬂ'*l) = {611‘71}7 (7' > 2)7
v—1
lpz}u = {P € Rgg ‘Pz, < H (6(1';1 = mlHrl) -1+ 5('1'# 7é w,u+1) 7)7 P1—z, = 0} (l/ = i:' . ‘Jj)J
p=i—1

7
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woraus wegen k(z, ...T,) = Zﬁ;}, 0(zx # Trpyy) direkt
nC(zy ... x5 15 7 ... 25) = —log max ||p||x
PEPi,;

B — log y"(@125) | falls i = 1,
| —logyREi-1mi) - falls i > 2,

) —k(xi...xj)logn, falls i =1,
| k(@i .. .zj)logy, fallsi>2

folgt. |

A.5.5 Symbolgewichtung aus Abschnitt 5.2.7

In Abschnitt 5.2.7 haben wir behauptet, dafs das folgende CHMM C

1.0 1.0
~— ~—
\/@\/
1:0 1:1

die Symbolgewichtung n¢ mit
7¢(X;00) =0, 7°(00;0) =0, 71°(A;000) =1
hat.

Beweis: Diese Aussage kann mit Satz 5.5 direkt nachgerechnet werden, oder wie folgt gezeigt:

Da alle Transitionsbereiche einelementig sind, kann der Adversary nur bei Wahl des ersten Anfangszustands
auf die Quelle Einfluf nehmen. Wir unterscheiden zunéchst zwei Adversaries A, und Ay, welche deterministisch
den Anfangszustand ¢ bzw. ¢o wahlen.

Es ist dann
P(Xox =00)=1,  P(X{"X;"=00)>0, und P(Xj"=0)=1,

also 7€ (X; 00) = 0 und 7°(00;0) = 0.

Zuletzt betrachten wir den allgemeinen Adversary A, der die Anfangszusténde ¢, qo, ¢ mit den Wahrschein-
lichkeiten pg, po bzw. p; wéhlt. Dann ist
P(X{'X3' X5 = 000) = py - 5 +po- 5 +p1-0< 4,

also 7€ (X; 000) > 1, und, wie man am Fall p, = 1 erkennt, 5°();000) = 1. |
A.5.6 Satz 5.5

Satz 5.5: Berechnung der Symbolgewichtung von CHMM
Q
Es sei C ein CHMM und z € XN, Weiterhin seien die folgenden Abbildungen auf 2R>5 definiert:

N(M) = {h=:pe M\ {0}},
TEM) = {( X lpy) - 1 €Cy, pe M},

q7'€Qc

wobei Eq: den topologischen Abschluf (im folgenden immer kurz Abschluff genannt) der konvexen Hiille
von C, bezeichne.
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Betrachte folgende Rekursion:

Pig= 7161 (IR?C);

Piji=Ta o N(Pij1) (1<i<y), (11)
Pij =T (Pij-1) 1<i<j)

Hierbei ist (11) wohldefiniert.

Dann ist

n¢ (@1 ... 215 7 ...2;) = —log max ||p||x (1<i<y). O
PEP;i ;

2,7

Hilfsatz A.28: Transitionswahrscheinlichkeiten im CHMM

Es sei C ein CHMM und A € Adve. Wir verwenden die Notation aus Definition 5.3. Dann gilt fiir beliebige
x; € Y und q' € Qc:

A A A A A =
(P(Qj =q, X =2| QL =q¢, X{"... X1, :xl"wj—l))zezc,quc €Cy,

sofern P(Q;L1 =q, X{*.. .Xﬁl =21...2;-1) > 0, wobei Eq/ den Abschlufs der konvexen Hiille von Cy

meine. O

Der Beweis zu diesem Hilfsatz findet sich auf Seite 81.
Beweis (zu Satz 5.5): Nach Lemma 5.7 konnen wir 0. B.d. A. alle C; (¢ € Q¢) als konvex annehmen.

Es seien fiir A € Adve, 1<i<7,q,q¢ € Q¢

pgA’i’j) = P(Qf =gq, XZA...XJ‘.4 =xz;...2; | Xf‘...X{il =T1...%i-1),
it = PQF = a),
tu(vf‘q’ql’j) = P(Qf =gq, XJ‘.4 =z | Q;tl =q, X{“...Xffl =T1...T5-1),

und fiir 1 <i<jund i =0, j =0 sei

772]- = {p(A”"j) : A € Adve, p(A’i’j) # 1},

und P} ; der Abschluf von P7;.

Wir wollen nun zeigen, daff

Pio =B (o1
PJ‘*,J':ECJ- o N( ii—1) (1<i<joderi=0, j=1), (62)

Haben wir dies gezeigt, so wissen wir, daf P; ; = P;; fiir 1 <4 < j, und dak (11) wohldefiniert ist.

Nach Definitionen 5.2 und 5.3 ist (61) klar.
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Wir wollen nun Pj; C TC o N(P} ri—1) fiir 1 <@ < j und fiir ¢ = 0, j = 1 zeigen. Sei p € ng. Dann existiert
ein A € Adve, so dai% P(XA XA 1 =%1...xj-1)>0und p= pA33)  Damit gilt fiir ¢ € Q¢

pl(IAij) :P(QA:(], XA :J?j | XAXjAl :le...iﬂj_l)

Z (QA_Q7 1_q X —Jjj |XA X;{l :.]71...56]'_1)
7'€EQc

Z P(Q}A:q’ XJA:'%] | Q}A—l :qla XiAX‘;A_l :Z’l...l'jfl)-
q'€EQc
(Qf—l = q' | XiAXjA_l =T ...l’jfl)

Ad, A _ A A _
= Z tg%qq 9 P( a=q XD XL =ax)

7'€Qc
= Y ). ((gAO q))(,, A XA xA o G=1),
zj,q j—1=4 j—1=Ti-- w1 | X7 XD =ewion) (1<i< )
a'€Qc P(XE. XAl—% wjo | X XA =awi) ’ = J
p(Am 9]
_ Z t;ﬁ,qqm TeEaRTy ?A RV (64)
q7'€Qc p !

Es gilt p(A5i-1) ¢ P;;_y, und mit Hilfsatz A.28 ist #A.459) ¢ Eq:, also nach vorstehender Rechnung p =
(AJ ) e TC oN(P;;_1), womit P9 C TC oN(P;y;_,) folgt. Aufgrund der stetigen Natur der in der Definition

von TC und N verwendeten Abblldungen und der Abgeschlossenheit von P;;_; und C + ist auch TC oN (P} 1)
abgeschlossen also haben wir sogar Pj ; C TC o N(P;;_1)-

Nunwollenwn"TCON( Fi—1) € P;; fiir 1 <i < jund fiir i =0, j = 1 beweisen.

Es sei dazu p € 7;(;70 o N(P?;_;) mit

Ei’O(M) = {( Z g’i)qpq )q ) ¢ Cy, PE M}

q'€Qc
Dann existieren ein A € Adve und ¢(4) € Cy (' € Qc), so dak fiir alle ¢ € Q¢ gilt:

p(AJ}jfl)
5 (a") ¢
Pq = Z t-’l'j7q ||p(A,i,j—1)||1'
q'€Qc

Wir konstruieren dann ein A € Adve mit A* := A* und

A(Var7Q7( ) (:UIJ)): fﬁrl/<j7
A, d' (qu) (w4)) := 10, fiir v = j, (65)
beliebig, fiir v > j.

Es ist dann pAii=1) = p(Aii=1) da diese nur von A bzw. A mit erstem Argument v < j abhiingen. AuRerdem
ist ¢(4:4"9) = ¢(¢') nach Konstruktion von A. Dies erlaubt, wie folgt zu rechnen:

(A,i,j—1) (Ai,j—1)

s @) _Po _ (Aq.5) _Po ©0) (A,5.5)
Py = Z basa o Aa D Z taslg Ay, Pa 7 (66)
llp Il1 Il Il1
7'€Qc 7' €Qc

also ist p = pAdd) ¢ P; ;- Damit wissen wir TC 00 N(POJ 1) € Pj;. Mit dem gleichen Stetigkeits- und
Abgeschlossenheltsargument wie oben erkennen wir, dafs ’TC o N(P};- 1) der Abschluft von 7;(;70 o N(PY;_1)

ist — man beachte hierbei, dafs die C, konvex sind —, somit 1st auch TC o N(P;;_1) C P, es folgt (62).

Nun wenden wir uns (63) zu und zeigen P;; C TC( 7o) fiir 1.<d < j. Sei wieder p € P7;, dann gibt

INE
es wieder einen Adversary A € Adve, so dak P(X{... XA, =z ...2z;—1) > 0 und p = p(459) . Damit gilt
1 i—1 g
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fiir ¢ € Qc:
pl(IA,iJ) :P(Qf:q, X;AX]AZLIJZLIJJ|X1AXZA_1 =T...%1)

A A A A A A
= Z PQi=q Qi_y=q¢, X/ .. X =z | X{ ... X2 =21 2i)
7' €Qe

Z P(Qf:qa Xj =Zj | fol :qla Xf‘XjAfl :.1’1...11,'1',1)

IEQ
! ¢ P(Q]’_lqu, Xi---Xj—l :J}Z‘...J?j_1|X1...Xl‘_1 :,271....271‘_1)
!5 Ayij—1
= 3 Y. (67
7' €Qc

Da pAhi—1) ¢ P;,_y, und #(A.d59) ¢ qu wegen Hilfsatz A.28, haben wir p = p,(IA’i7j) € 7;CJ (P;;_1), woraus

mit obigen Stetigkeits- und Abgeschlossenheitsiiberlegungen P} ; C 7;63( +i—1) folgt.

Um 7;61( ¢ i—1) € P, fiir 1 <4 < j zu zeigen, wihlen wir wieder ein beliebiges p € 7;(;70(772]-_1). Dann gibt

es A € Adve und t(9) € Cp (¢' € Qc), so dak fiir alle ¢ € Q¢ gilt:
po= Y tl) plbiay
7' €Qc
Wieder sei A € Adve durch (65) definiert, und wir folgern analog zu (66):
5 , A P A‘ . ~
Bo= Dt p T = B ST g, (68)
q'€Qc 7'€Qc

Folglich ist p = p(A7i*j) € P} ; und mit den gleichen Stetigkeits- und Abgeschlossenheitsiiberlegungen wie oben

folgt 7. (P;;_1) C Py, und (63) ist bewiesen.

Zuletzt erkennen wir noch, dafs fiir 1 <1 < j:

(@1 .. i1 T ... x))

= —log sup P(XiA...X]A:a:,-...mj | XA XA =23 )
A€Adve

—log sup Z P(Q* = q, X{‘...Xf::v,-...xj|X{4...X£1:x1...:v,-_1)

AcAdve 4€Qc
=—log sup [p““"7|; = —log sup []p|li = —log max ||p||x
A€Adve PEP?; PEPS;
= —log ma . [ |
gpepfjllplll

Beweis (zu Hilfsatz A.28): Wir interpretieren IRIECXQC als Teilmenge des R™ mit m := #X¢ - #Qc¢. Es sei
C := Cy. Nach Konstruktion ist C C R™ konvex und abgeschlossen.

Unter einem offenen Halbraum H, 4 (im folgenden kurz Halbraum) verstehen wir eine Menge {x € R™ :
nTr < d} mit n € R™\ {0}, d € R. Es sei H die Menge aller Halbrdume H mit C' N H = (). Wir behaupten,
dafs

R™\ | J H=C. (69)

HeH

Um (69) zu zeigen, sei x € R™ \ C. Dann miissen wir zeigen, dal « € H fiir ein H € H. Wihle y € C so,
daf || — y||2 minimal (das Minimum existiert, da C' geschnitten mit einer hinreichend grofen Kugel um z
nichtleer und kompakt ist). Es sei dann H ein Halbraum, dessen Rand orthogonal auf zy steht, und fir den
x € H,y ¢ H gilt. Wir miissen nun zeigen, daf H N C = () (damit H € H). Nehmen wir hierzu an, es gebe
ein z € HNC. Da z € H, gibt es ein w € yz (der Strecke zwischen y und z), so daf ||z — w|]2 < ||z — y||2-
Da y,z € C liegen und C kompakt ist, ist auch w € C, damit ist aber ||z — y||2 nicht minimal, es liegt ein
Widerspruch vor. Somit gilt (69).
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Sei nun H,, 4 € H. Wir wollen zeigen, daf
(P(Q;-4 =q, X]A =x| Qf_l =q, X ..X]A_1 =x.. ‘mj*l))zezc,quc ¢ H,.q. (70)
Es gelte die Notation aus Definition 5.3. Sei
M = {(rg,...,rj,l,r('),r'l,...) € [0,1)No:
PR, Ry Ry By, )=(ro, s a i) (@1 = €5 X XL =21 aj) = 1}-

Man beachte, dafs die Wahrscheinlichkeit in dieser Gleichung fiir beliebige Werte fiir rq,...,7;_1 und (r}) nur
0 oder 1 sein kann, da Qf_l und X{4 .. .XJA_1 vollsténdig durch Ry,...,Rj 1 und R' determiniert sind.

Es ist nun
1=P(T}eC2Cy | QL =0q, X{* .. X2 =a1...2;.1)
=P(T/* € C| (Ro,...,Rj_1, Ry, R},...) € M)
S P(T]A ¢ Hn,d | (R07"‘7Rj*17R67 117) € M)
=P(n"T! >d| (Ro,...,Rj—1, R}, Ry,...) € M).
Mit

E = E(T*|(Ro, ..., Rj—1,R}, R}, ...))

folgt daraus
n"E =E(n"T{|(Ro,...,Rj—1, Ry, Ry,...) € M) >d,

also E ¢ H,, 4. Da dies fiir alle H, 4 € H gilt, erhalten wir nach (69) sofort £ € C.
Schlieklich es sei t = ¢(rg,...,7j—1,70,...) € R™ der Wert mit

P(T]A:t | (Ro,...,Rj_l,R:),...): (To,...,’l“j_l,T(l),...)) =1

(dieser existiert, da TjA nur von Ry, ..., R;j_1, Ry, ... abhéngt).
Wir erhalten dann fiir € ¢, g € Q¢
P(Qf =q, Xjf4 =z | Q?_l =d, X{“...XJA_1 =T1...T5-1)

fM P(R07...,Rj,17R(’),Ra,...):(rm...,rj,l,réﬂ"l,...) (6234 =4q, X‘}A = Jf) d(To, ceey i1, ’ré)v rlla .- )
P((Ro-., R, Ry, R, ) € M)

5 Japtro, .oy m-1, 70,7 o Dang A(ros .. Ti—1,TH, T, )
P((Ro,...,Rj_l,RB,Rll,...) EM)

B E((T{")2.q - (6(Ro,...,Rj_1, Ry, Ry, ...) € M))

B P((Ro,....Rj_1,R}),R},...) € M)

=FEasq-
Damit ist
(P(Q}4 =q, XJA =z | Q?—l =, X{4 .. -XjA—l =1 "'xj_l))wequGQc =FEe(C= qu. |
A.5.7 Lemma 5.7
Lemma 5.7: Konvex-dquivalente CHMM
Sind C und €' konvex-dquivalente CHMM, so ist X¢ = X O

Beweis: 0.B.d. A. seien alle C; konvex. Dann ist zu zeigen, daf x¢ c xe.
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Sei A € Adver. Wir konstruieren dann A € Adve wie folgt:
A (') = A ((r5)0),
A(i,', g, (@), (00)) = gq (1511, A, (13, 4, (00), (00))) (71)
fiir ' € [0,1)N0, i € N, g € Qc, (q) € Q}, (0,) € 35
Es bleibt die Funktion g, : [0,1) x C; — C; zu definieren. Seien ¢ € Q¢, r € [0,1), p € C;. Dann wihle
n(@p) € N, al®? ¢ [0,1], P € C, (v=1,...,n®P) so, dak

nla:p) nla:p)

Z a'(/qyp)p'(qup) =p und Z a,(,q’p) =1. (72)
v=1 v=1

Dies ist moglich, da C; in der konvexen Hiille von C, liegt. Es sei dann

v—1
qp) _ Zaqp) Z (4P> (y:l,...,n(q’p)) (73)
n=1 k=1

und

gq(r,p) = plaP) — re MoP) (v=1,...,neP), (74)
Wir behaupten nun, daf X4 und X A yon gleicher Verteilung sind.
Seien ¢, € Q¢, z, € ¥¢ und ' € [0, 1)No. Zuniichst wollen wir induktiv fiir alle i € Ny zeigen, daf

P(R’ZV)V:r’(QOA---Q?:qO---Qi: X{4X;4:x1:v,)
=P (QF..Q N =qo...qi;, X{. .. XA =21 ... 3). (75)

Fiir i = 0 folgt die Aussage direkt aus der Definition von A*. Sie gelte nun fiir i — 1, wir wollen sie fiir i zeigen.
Es sei p:= A(i,r',q,(q,), (x,)), dann erhalten wir

P(R/zy)u:rl(Qé-.-Q;‘A =dqo---49;, XiAXlA =T le)
n(2i—1.p)
- Z Fry,),=r (Raiss € M'Eqpl’p))P(R’zy)u:r' (QS‘ Qi =g qim, XX = - Ti—1)
v=1 5 ~
P(Rlzu)u:'r/ (62;4 = q, XA =T; | RIZZ+1 € M'qu'—up)’

(3

A A A A
QO "'Qifl =qo---9i—1, Xl "'Xz'fl :xl...:v,-_l)

o

n(2i—1.p)
(73),1V . u A B L
= Z af}q 1,P) Pri—p (Qo L Qz‘—l =q..-Qi—1, X1 "'Xi—l =2x.. ..Z’z',l)
v=1 5 ~
A A , L
PRy, )= (Qf =qi, X' =a; | Rhyy € M (i),

i A i i
Qo - Li=qo---qio1, XX =w i)
n(2i—1,p)

( )( ) ;
T Z q1 1.p) PR’—r’ (QOAQ;Ail =dqo.--9i—1, XiAXZ‘él =T ....Z’z'fl) (p'(/quhp))xi’qi

(E)PR/:T/ (QOA QY =g i, X XA =0 i) (AG g, (), (a:,,)))mivqi
=P (Q) ... Qi  =qo.-.qi1, X{'.. X,Al =z...7 )
Pri_y (Q =q;, X; —xl|Q0.. A =qo...qii1, Xf‘...XiA_lzml...:v,-_l)
:PR/:r/(QO Qz =qo--- ¢, X1 ...XZA :ml...mi).
Damit ist (75) bewiesen.
Es folgt aus (75) durch Integration
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insbesondere

PX{A . XA =z ...2)) =P X XA =21 ...1y),

(2

es haben X4 und X4 die gleiche Verteilung, also X4 € X€. |
A.5.8 Lemma 5.9

Definition 5.8: Endlich reprisentierbare CHMM
Ein CHMM C heift endlich, wenn alle C; (¢ € Q¢) endlich sind.

Ein CHMM C heilit endlich reprisentierbar, wenn ein endliches CHMM C(C’ existiert, welches konvex-
dquivalent zu C ist.

Ein CHMM C heifst fast endlich reprisentierbar, wenn ein endliches CHMM C’ existiert, welches fast konvex-
dquivalent zu C ist. O

Lemma 5.9: Reprisentierbarkeit von durch Diagramme definierten CHMM

LRt sich ein CHMM durch ein Diagramm mit beigefiigten Gleichungen und Ungleichungen darstellen (wie
vor Definition 5.1 erldutert), und sind diese Gleichungen und Ungleichungen linear, sowie alle an den Pfeilen
notierten Wahrscheinlichkeitsmengen Intervalle, so ist das CHMM fast endlich reprisentierbar.

Sind zusitzlich alle an den Pfeilen angegebenen Wahrscheinlichkeitsmengen abgeschlossen, und kommen

in den Gleichungen und Ungleichungen nur die Relationen <, > und = vor (nicht < oder >), so ist das
CHMM sogar endlich reprisentierbar.

Beweis: Sei das CHMM C wie im Lemma beschrieben darstellbar. Es bezeichne M, , o (¢,¢" € Qc, © € X¢)
die Menge der fiir den Pfeil von ¢ nach ¢’ mit Symbol = zugelassenen Wahrscheinlichkeiten. Falls der Pfeil
mit einer freien Variable (die in den Gleichungen/Ungleichungen vorkommt) beschriftet ist, sei M, , o = [0, 1].
Alle M, . o sind nach Voraussetzung Intervalle, somit konvex.

Sei G! C R>¥¢*Q¢ der Losungsraum der Gleichung g;, projiziert auf die an von ¢ € Q¢ ausgehenden Pfeilen
stehenden Variablen. Dann ist GG; ein Hyperebene, also konvex und abgeschlossen.

Sei Ul C R*¢ *Qc der Losungsraum der Ungleichung u;, projiziert auf die an von ¢ € Q¢ ausgehenden Pfeilen
stehenden Variablen. Dann ist U; ein Halbraum, also konvex und — falls nur die Relationen <, > und =
vorkommen — abgeschlossen.

Wir erhalten

Co =Ry n J[ My n(GIUNUL. (76)
zE€Xc i i
4 €Qc

Es ist lRlzCXQC eine konvexe Menge, deren Abschluf endlich erzeugt ist (er wird von den Einheitsvektoren

aufgespannt), diese Eigenschaft bleibt erhalten bei Schnitt mit einem Quader ([]zexc My q,q ), mit einer Hy-
4'€Qc

perebene (GY) oder einem Halbraum (U/) erhalten. Also ist C, konvex und der Abschluff von C, ebenfalls

endlich erzeugt. Damit ist C fast endlich représentierbar.

Treffen noch die zusétzlichen Voraussetzungen aus der zweiten Hilfte des Lemmas zu, so sind alle Mengen auf
der rechten Seite von (76) abgeschlossen, damit ist es auch C,. Damit nicht nur der Abschluf von C, endlich
erzeugt, sondern auch C, selbst. |

A.5.9 Lemma 5.10

Lemma 5.10: Konvexitiat der Rekursion in Satz 5.5

Sind C und C' zwei fast konvex-dquivalente CHMM, = € ¢, 7, und A wie in Satz 5.5, sowie P, P’ C IR?C
konvex-dquivalent, dann sind

NP) = NP,  TEP)~TE(P) und  —logsup|lp|l = —log sup|lp||s,
pEP pEP!
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wobei &~ konvexe Aquivalenz meine. (]

Hilfsatz A.33: Konvexitit einiger Operationen

Es sei V ein endlichdimensionaler Vektorraum, 4;,B; CV mit A; ~ B; (i=1,...,n),und L : V =V
linear. Dann sind

{La:a€ A1} ~{Lb:be€ B}, (77)
A1 X {1} [~ B1 X {1}, (78)
n n
=1 =1
Hierbei bezeichne &~ konvexe Aquivalenz und @ das Kroneckerprodukt. (]

Den Beweis dieses Hilfsatzes findet man auf Seite 85.
Beweis (zu Lemma 5.10): Es bezeichne M die konvexe Hiille von M.
0.B.d. A. seien P und P’ nichtleer.

Sei p € N(P). Dann existiert ein p € P mit p = ¢ !p, ¢ := ||p|}; # 0. Da P und P’ konvex-dquivalent sind,
existieren endlich viele p; € P'\ {0}, r; € [0,1] mit p = > mipl, > r; < 1. Wir setzen ¢; := ||p}||; und erhalten

damit
p=Y_ c'riep; (80)
i
mit p} := pl/|Ipill1. Da ¢, r;, ¢; und alle Koeffizienten von p} nichtnegativ sind, gilt

1=l = e el = 3 e i,
i i

damit ist (80) eine Konvexkombination iiber N'(P’) (denn p} € N (P')), also N'(P) C N (P’), woraus sich — da
analog NV (P') C N(P) folgt — N(P) =~ N(P') ergibt.

Sei Qc ={q1,...,q.}. Firpe M, ) ¢ C, enthiilt der Vektor

() ® @), 1)

q'eC

alle Summanden von ) 7 €Qe tg{;) py als Komponenten (mit ¢ € Q¢, = € X¢). Also existiert ein Endomorphis-
mus L auf (RY¢ x {1})®#Qc+1 50 daf

TE(P) ={L((p. ) ® @@),1) :peP, 1) eCy}
q'eC
Nach Hilfsatz A.33 ist damit 7.5 (P) ~ TL(P'). Da T nur vom Abschluf der konvexen Hiille der C, abhéingt,
ist auferdem 7.¢ = 7., damit ist 7S(P) ~ T (P').
Da in R alle Komponenten nichtnegativ sind, ist ||-|]; : R¥¢ — R>¢ linear. Nach Hilfsatz A.33 sind somit
Py :=A{llpll :p € P} = {|lpll1 : p € P'} =: Ply. Damit ist
sup Py = max Py = max Pj = sup P,

und schlieflich

— log su71:;||p||1 = —logsup Py = —logsup Py = — log sup ||p||1 - [ ]

PE

peEP’

Beweis (zu Hilfsatz A.33): Sei @ € {La : a € A;}. Fiir geeignete b; € By und r; € [0,1] mit > r; = 1 ist
dann a = LY r;b; =Y r;Lb; eine Konvexkombination tiber {Lb: b € By}, also {La:a € A;} C{Lb:b€ By}.
Damit gilt (77).
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Sei (a,1) € Ay x {1}. Fiir geeignete b; € By und r; € [0,1] mit > r; = 1 ist dann a = ) r;b;, also ist
(a,1) = (X ribs, Yori- 1) =3 ri(bi, 1) eine Konvexkombination iiber By x {1}. Damit folgt (78).

Seien a; € A; fiir i = 1,...,n. Dann existieren b;; € B; und r;; € [0, 1] mit Zj rij =1, s0 dall a; = Zj 7i;bij.
Es folgt

ay Q- Qap = (Zrljblj) ® - ® (Zrnjbnj) = Z T1jy Trj, D1j; @ - @ bnj,
J J

J1seeadn
und
5 rurn = (S) (S =1
J1seenrdn j J
also ist a; ® - - - ® a,, eine Konvexkombination iiber {®?:1 b; : b; € B,-}, womit sich (79) ergibt. [ |

A.6 Zu Kapitel 6
A.6.1 Bemerkung auf Seite 40

In Abschnitt 6.2, Seite 40 haben wir behauptet, dafs selbst fiir exponentiell zuféllige Familien von Quellen i. a.
nicht gilt, dall Farnda,x, von Fux sicher realisiert wird.

Hilfsatz A.34: Probabilistische Unentscheidbarkeit

Es existiert eine Funktion h : N — {0, 1}, so daf keine probabilistische Turingmaschine existiert, die fiir
fast alle i € N bei Eingabe i mit einer (moglicherweise von i abhéngigen) Wahrscheinlichkeit von mehr als
1 die Ausgabe h(i) hat. O

Der Beweis zu diesem Hilfsatz findet sich auf Seite 87.

Beweis (zur Bemerkung): Es sei h eine Funktion wie in Hilfsatz A.34 und X eine parametrische Familie
von Quellen mit Iy = N, und X (k,i) sei gleichverteilt auf {0,1}*(*) fiir alle i € Iy und k € N. Da X(k,1)
perfekt zufillig, ist A exponentiell zufallig.

Wir nehmen an, Fx wiirde von Farnd,x, sicher realisiert.

Man betrachte den Adversary A mit folgendem Verhalten: Bei einer Nachricht (i) von der Umgebung wird
eine Nachricht (source, 1,i) an die ideale Funktionalitit Fy gesandt.

Dann existiert ein Adversary S, so dak fiir jede Umgebung die Ausgabe des idealen und des realen Modells
ununterscheidbar sind.

Die Partei P, leite alle Nachrichten zwischen Funktionalitdt und Umgebung direkt weiter.
Es bezeichne k den Sicherheitsparameter.

Betrachte nun die Umgebung Z, welche dem Adversary die Nachricht (k) und danach der Partei P die
Nachricht (random) schickt. Erhélt die Umgebung die Nachricht (nodata, 1) von Py, so terminiert sie und gibt
0 aus, bei einer anderen Nachricht terminiert sie ebenfalls und gibt 1 aus.

Im idealen Modell ergibt sich die Ausgabe nun wie folgt: Die Funktionalitit Fx erhélt vom Adversary die
Nachricht (source, 1, k), also wird sie auf die Nachricht (random) von P; genau dann mit (nodata, 1) antworten,
wenn (X (k,k)), = L, was wiederum genau fiir h(k) = 0 der Fall ist. Andernfalls (h(k) = 1) wird eine Nachricht
der Form (data, 1,-) an die Umgebung versandt.

Also ist die Ausgabe der Umgebung gerade h(k).

Da die Ausgabe R(k) im realen Modell von dieser ununterscheidbar sein soll, gilt fiir hinreichend grofses k
L > SD(h(k), R(k) £ 1|1 = P(R(K) = h(k))| + 1[P(R(K) # h(k)| = P(R(K) # h(k)).  (81)

Da alle Komponenten des realen Modells Turing-Maschinen sind, lafst sich R(k) durch eine Turingmaschine
simulieren, damit ist (81) ein Widerspruch zu Hilfsatz A.34. [ |

86



A.6 Zu Kapitel 6

Man beachte, daf die einzige Eigenschaft, die wir von Farna,x, benutzt haben, die ist, daff sich Farnda,s,
durch eine Turingmaschine simulieren 1ifst.

Beweis (zu Hilfsatz A.34): Es sei M eine (nicht notwendig injektive) Aufzahlung aller probabilistischen
Turingmaschinen.?! Dann sei

27 82
0, sonst. (82)

hi) = {1, P(M (i) hilt bei Eingabe i) > 1
Wir nehmen nun an, es gebe eine probabilistische Turingmaschine H, so daf fiir alle i € N gilt:

P(H(i) = h(i)) > (83)

[N

Nun konstruieren wir die Turingmaschine H, welche bei Eingabe i zunéchst H (i) simuliert, bei H (i) = 0 hlt,
und bei H(i) =1 in eine Endlosschleife eintritt (d.h. nicht hilt). Sei n € N mit M (n) = H.

Wir werden nun feststellen, daf dann weder h(n) = 1 noch h(n) = 0, womit die Existenz von H zum Wider-
spruch gefiithrt und der Beweis vollendet wire.

Wir nehmen hierzu zunéichst h(n) = 0 an. Dann ist mit (82)
P(M(n) = H hilt bei Eingabe n) = P(H(n) = 0) = P(H(n) = h(n)) >
und damit folgt mit (82) der Widerspruch h(n) = 1.
Nun nehmen wir A(n) = 1 an. Dann ist mit (82)
P(M(n) = H hilt bei Eingabe n) = P(H(n) =0) = P(H(n) =1—h(n)) < %

und es folgt mit (82) der Widerspruch h(n) = 0.

Da keine Turingmaschine H existiert, die h(i) fiir alle i € N mit einer Wahrscheinlichkeit von mehr als
berechnet, existiert auch keine, die dies fiir fast alle i € N tut, da man aus letzterer erstere konstruiere
kénnte. |

1
2
n

A.6.2 Satz 6.7

Satz 6.7: Sicherheit von Fy
Ist X' eine simulierbare und superpolynomiell zuféllige Familie von Quellen, so wird Fagnd,z, von Fx
sicher realisiert (im Canetti-Modell). O

Beweis: Zunichst wollen wir die Aussage fiir den Fall beweisen, dafs X eine perfekt zuféllige und exakt
simulierbare Familie von Quellen ist. Es sei k der Sicherheitsparameter.

Wir nehmen o.B.d. A. an, der Real-Life-Adversary nehme einfach nur Anweisungen der Umgebung entgegen
und fithre diese aus, und leite empfangene Nachrichten an die Umgebung weiter (ein sogenannter Dummy-
Adversary). Diese Annahme ist nach [Can00] gerechtfertigt (siehe dort die Erlduterungen zum dummy adver-

sary).

Wir konstruieren dann den idealen Adversary S wie folgt:

e Zunichst werden die Variablen s; := o fiir alle j initialisiert, wobei o wie in Definition 6.5 sei.

e Ungiiltige Nachrichten von der Umgebung werden ignoriert (d. h. solche, die auch der Dummy-Adversary
ignoriert hétte).

e Anweisungen der Umgebung, die einen der folgenden Punkte betreffen, befolgt S:

— Korruption von Parteien.

31Das heift 4 ist eine Godelnummer der probabilistischen Turingmaschine M (4)
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— Zuriickliefern des Inhalts der Ausgangsbinder der Parteien.

— Zuriickliefern der Adressaten der Nachrichten auf dem Ausgangsband der Funktionalitit. (Hierbei
werden aber weiter unten verworfene Nachrichten natiirlich nicht mit zuriickgeliefert.)

— Ausliefern einer Nachricht von der Funktionalitidt an eine Partei.

e Verlangt die Umgebung, eine Nachricht an die Funktionalitit zu liefern, so liefert S diese nicht aus. Hat
die Nachricht die Form (source, j, i), wobei P; eine existierende Partei ist, die noch keine Nachricht der
Form (random) erhalten hat,? und i € Iy, und noch keine Nachricht der Form (source, j,i) von der
Umgebung erhalten wurde, so wird die Variable s; :=i in S gesetzt.

e Sendet die Umgebung eine Nachricht an Partei P;, so geht S wie folgt vor:

Es sei p; die Anzahl der von der Funktionalitét bereits an P; adressierten Nachrichten (einschlieflich der
aktuellen). Bestimme den Wert von o := (Us(f ))pj. Ist 0 = L, so verwerfe die von der Funktionalitidt an
P; adressierte Nachricht, und fordere die Funktionalitit mittels der Nachricht (stop) auf, eine Nachricht
der Form (nodata, -) zu senden. Diese verwerfe dann nicht.

Hierbei sei Us(f ) eine Kopie der Quelle X (j)(sj, k), simuliert vom Adversary unter Benutzung der nach
Definition 6.6 existierenden Turingmaschine M. Da A exakt simulierbar ist, hat Us(f ) genau die gleiche
Verteilung wie X () (sj, k). Es existiert dann ein Polynom p, so daf bei fortlaufender Berechnung der

Komponenten von Us(]j ) fiir jede Komponenten nur maximal p(k) Schritte bendtigt werden,®3 also kann
S diese Simulation auch durchfiihren und dabei polynomiell bleiben.

Es seien (jeweils zum Zeitpunkt des Beginns der i-ten Aktivierung der Umgebung):

ZE  der Zustand der Umgebung Z im Real-Life-Modell.
T der Zustand der Umgebung Z im idealen Modell.

P der Verlauf (history) aller Parteien! im Real-Life-Modell.

P! der Verlauf (history) aller Parteien im idealen Modell.

F*  das ausgehende Kommunikationsband der Funktionalitit im Real-Life-Modell.

FI'  das ausgehende Kommunikationsband der Funktionalitiit im idealen Modell,

ohne die von § verworfenen Nachrichten.
SE  die Variablen (s;); der Funktionalitit im Real-Life-Modell.
S! die Variablen (s;); des Adversaries S im idealen Modell.

Wir behaupten nun, dafs
SD(R;;I;) =0 (1 € N). (84)

mit
R; = (ZﬁapiRaFiRaSz’R) und I; := (ZzlapzlanlaszI)
Wir beweisen (84) induktiv, der Fall i = 1 ist klar.

Es gelte (84) nun fiir ¢ — 1, wir zeigen es dann fiir . Wir unterscheiden anhand der verschiedenen Aktionen, die
Z am Ende seiner Aktivierung durchfiithren kann. Fiihren all diese Aktionen zu den gleichen Verdnderungen
auf R; und I;, so ist die Aussage bewiesen.

1. Fall: Z sendet eine ungiiltige Nachricht an eine Partei.?®

Diese Nachricht wird in beiden Modellen von einer Partei an die Funktionalitidt weitergeleitet und von dieser
ignoriert. Somit hingt R; in gleicher Weise von R;_; ab wie I; von [;_1.

32Dies weif S, da es von der Funktionalitiit in diesem Fall mit der Auslieferung der Antwort beauftragt worden wire.

33Da der Dummy-Adversary polynomiell beschrinkt ist, gilt fiir ein von der Umgebung mitgeteiltes (und vom Dummy-Adversary
nicht ignoriertes) i € Ix: |i| < p1(k) fiir geeignetes Polynom p;. Weiterhin ist aus dem gleichen Grund die Anzahl der zuriickgelie-
ferten Symbol aus der Quelle durch pa(k) fiir ein geeignetes Polynom ps beschrinkt. Damit ist die Laufzeit pro Komponente von
Ui(]) durch p(k) := p3(k+p1(k)+p2(k)) beschrinkt, wobei p3 das in Definition 6.6 angegebene, die Laufzeit vom M beschrinkende
Polynom sei. Analoges gilt fiir die Laufzeit, die zum Entscheiden des Problems ¢ € Iy notwendig ist.

34Bestehend aus allen von diesen bislang gesandten und empfangenen Nachrichten.

35Das heiBt eine Nachricht an P;, die weder die Form (random) noch (init) hat, oder die die Form (init) hat und an Partei j
geht, obwohl P; bereits eine Nachricht dieser Form erhalten hat, oder die Form (random), obwohl P; noch keine Nachricht der
Form (init) erhalten hat.
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2. Fall: Z fordert den Adversary auf, eine Partei zu P; zu korrumpieren. In beiden Féllen fiihrt der Adversary
dies aus, und in beiden Fillen hiingt die an Z zuriickgelieferte Information nur von P£ | bzw. P! | ab, somit
hangt R; in gleicher Weise von R; 1 ab wie I; von I;_;.

3. Fall: Z fordert den Adversary auf, den Inhalt der Nachrichten auf den Ausgangsbidndern der Parteien und
die Empfinger der Nachrichten auf dem Ausgangsband der Funktionalitit zu iibermitteln.
Sowohl im Real-Life- als auch im idealen Modell kommt der Adversary dieser Aufforderung nach.

Die Nachrichten auf den Ausgangsbiindern der Parteien hiingen — analog dem 2. Fall — nur von P{*, bzw. PL |
ab.

Die Empfiinger der Nachrichten auf dem Ausgangsband der Funktionalitiit hiingen nur von F | bzw. PL | ab.

Insgesamt hingt R; in gleicher Weise von R;_; ab wie I; von I;_;.

4. Fall: Z fordert den Adversary auf, eine Nachricht von der Funktionalitdt an eine Partei auszuliefern.

In beiden Modellen kommt der Adversary dem nach. Die auszuliefernden Nachrichten sind in F£, bzw. FL
enthélten, also folgt — wie in den vorangehenden Schritten — daf R; in gleicher Weise von R;_; abhéngt wie
I,' von Iz‘—l-

5. Fall: Z schickt dem Adversary eine an die Funktionalitit weiterzuleitende Nachricht.

Ist die Nachricht nicht von der Form (source, j,i) mit P; einer existierenden Partei, die noch keine Nachricht
der Form (random) von der Umgebung erhalten hat, und 7 € Iy, so wird sie im Real-Life-Modell von der
Funktionalitét, im idealen Modell vom Adversary ignoriert, und die Argumentation von Fall 1 gilt auch hier.

Ist die Nachricht der Form (source, j,i), i € Iy, und ist noch keine Nachricht der Form (random) an P;
geschickt worden, so geschieht folgendes:

Die Variable s; in der Funktionalitéit (im Falle des Real-Life-Modells) bzw. im Adversary (im Falle des idealen
Modells) wird auf den Wert i gesetzt. Das hat die gleichen Auswirkungen auf S¥ bzw. S/, somit hingt R; in
gleicher Weise von R;_1 ab wie I; von [;_1.

6. Fall: Z schickt eine Nachricht der Form (init) an die Partei P;, und es wurde zuvor keine Nachricht dieser
Form an P; geschickt.

Die Funktionalitit schickt dann (in beiden Modellen) eine Nachricht der Form (init, j) an den Adversary, und
in beiden Modellen leitet dieser diese wiederum einfach an die Umgebung weiter.

Dies fiihrt also zu den gleichen Verdnderungen auf R; und ;.
7. Fall: Z sendet eine Nachricht der Form (random) an die Partei P;, und es wurde bereits eine Nachricht der
Form (init) an P; gesandt.

Im Real-Life-Modell verhélt sich die Funktionalitét wie folgt:

o Ist 0:= (X¥U(s;,k)) = L,so wird (nodata,p;) auf das Ausgangsband geschrieben.

pj

e Sonst wird (data, pj, o) auf das Ausgangsband geschrieben. Hierbei haben ¢ = 1 und o = 0 die gleiche
Wahrscheinlichkeit.

Im idealen Modell verhélt sich die Funktionalitidt wie folgt:

e Es sei p; die Anzahl der Nachrichten (random) die iiber P; an die Funktionalitit geschickt wurden (ein-

schliefslich der aktuellen). Ist (Us(f ))pj = 1, so wird (nodata, pj) zuriickgeliefert. (Denn die Funktionalitét
wird von Adversary aufgefordert, diese Nachricht zu senden.) Die von der Funktionalitit gesandte, vom
Adversary aber verworfene Nachricht verindert F} nicht (siehe die Definition von F}).

e Ansonsten wird (data, pj, o) zuriickgeliefert, wobei o mit gleicher Wahrscheinlichkeit die Wert 0 und 1
annimmt.
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Da nach Konstruktion Us(]j ) und x0) (sj, k) die gleiche Verteilung haben, sind die verschiedenen Antworten der
Funktionalitit in den beiden Modellen je gleichwahrscheinlich.

Dies fiihrt wieder zu den gleichen Verdnderungen auf R; und I;.

Es trifft also (84) zu, woraus sich direkt folgern laft, dak auch die Ausgaben der Umgebungen in beiden
Modellen den Abstand 0 haben, also Farnd,x, von Fx sicher realisiert wird.

Wir betrachten nun den allgemeinen Fall, dafs X' nur superpolynomiell zufillig und simulierbar ist. Es sei dann
Y eine parametrische Familie von Quellen mit

V(k,i) =YD,

wobei Y (%9 wie in Definition 6.6 sei. Dann ist ) nach Konstruktion exakt simulierbar, und es existieren ein
Polynom p und eine superpolynomielle Funktion fi, so dafs fiir hinreichend grofes k£ € N folgt:

p(l)
fi(k)

SD( (V(k, 1)), - (V(k,),; (X(k,), - (X(k,1)), ) <

.

(leN,iely). (85)

~ ~
—.yk.il —. X kil

Da A& superpolynomiell zuféllig ist, existieren weiterhin eine superpolynomielle Funktion f> und eine perfekt
zufillige parametrische Familie von Quellen U/, so daf fiir jedes hinreichend grofse k£ € IN gilt:

SO ((Uk i), ... WGk, D),; X)) < (LEN,i€Iy). (86)

= fa(k)

~
—.Uk.isl

Es sei weiterhin V die perfekt zuféllige parametrische Familie von Quellen tiber ¥y, bei der |V(k, )| die gleiche
Verteilung wie |Y(k,i)| hat. V ist exakt simulierbar, denn das Programm M, welches nach Definition 6.6 )
exakt simuliert, kann wie folgt in eines zur Simulation von V umgewandelt werden:

e Bei Aufruf mit Eingabe (k,i,n,d) berechne (y,d') := M (k,i,n,d).
e Wihle zufillig 0 € ¥ x.

e Liefere (0,d') zuriick.

Es folgt direkt aus der Konstruktion von V, dafs
SD(|URH; [VE4H) = SD(JUk-5t); [y Rl (k,l € N,i € Iy)
mit
VEEl= (V(k,1)), ... (V(k,1)),,
woraus wegen der perfekten Zufélligkeit von ¢ und V folgt:

2.

SD (Ukid; YRt} 22 gD ([Uhsid ) VAt ) = SD(JURt|; [y *oid ) %USD(Uk,i,l;Yk,i,l)‘ (87)

Insgesamt ergibt sich also fiir eine geeignete superpolynomielle Funktion f3, geeignetes Polynom p; und hin-
reichend grofes k € IN:
kil 1kl oY ki, 77kl ki, 1 kil
SD(X ™55 viehy < SD(X™5Y UMY 4+ SD(UM; V5

(

(87) . . ) -

S SD(X’“Z’Z; Ulc,z7l) + SD(U’C’ZJ; Y’“Z’l)
(

2.9(3)

S SD(Xk,i,l; Uk,i,l) +SD Uk,i,l; Xk,i,l) +SD(Xk’i’l,Yk’i’l)

(86),(85) 9 p(l) p1(1)
fs(k)

ACREAD

IN

<
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Wir wollen daraus nun folgern, daf Fy die Funktionalitit Fy, sicher implementiert. Da wir bereits wissen, dafs
Fy die Funktionalitit Farnd,x, sicher implementiert (denn V ist perfekt zuféllig und exakt simulierbar), folgt
damit dann die Behauptung.®®

Zu jedem Real-Life-Adversary A sei der ideale Adversary S := A. Es liege eine Umgebung Z fest. Dann sei
p' ein Polynom, so dak p'(k) eine obere Schranke fiir die Anzahl der Aktivierungen der Umgebung und des
Adversaries darstellt.

Es kénnen dann hochstens p'(k) verschiedene Parteien aktiviert werden, und fiir jede Partei kann hochstens
eine Quelle aus X’ bzw. V angesprochen werden (nach Konstruktion von Fy bzw. Fy, siche Definition 6.5). Es
sei weiterhin R die Gesamtheit aller im realen bzw. idealen Modell benutzten Zufallsbénder (aufer innerhalb
der Funktionalitit).

Wir definieren noch einige weitere Zufallsvariablen:

e Man betrachte die im Real-Life-Modell vom Adversary an die Funktionalitdt gesandten Nachrichten der
Form (source,,i), i € Iy. Dann definieren wir den Wert der Zufallsvariablen S](%J) als das dritte Feld
(also i) der j-ten solchen Nachricht. Analog definieren wir fiir das ideale Modell die Zufallsvariablen S}j ),

e Es seien
x0) .= xkSTP R ynd V) .= RS (k)

Hierbei seien fijr die Definition der verschiedenen X /) und V) verschiedene Kopien der Zufallsvariablen
Xkl ynd VR4 angenommen.

Ist die j-te Nachricht (source, -, -) von giiltiger Form (d. h. wird sie von der Funktionalitéit beriicksichtigt),
so sind X9 bzw. V() die dabei den Parteien verfiighar werdenden Quellen.

e Und zuletzt fassen wir zusammen:

Real” := (R, XM, ... X))  und  Ideal? := (R, V), . .. v

Es beschreiben nun Real”) und Ideal? bis zum Auftreten der (j+1)-ten Nachricht (source, -, -) simtlichen
den Parteien, der Funktionalitdt und der Umgebung zur Verfligung stehenden Zufall, also hingen insbe-
sondere alle deren Aktionen bis zu dieser (j 4+ 1)-ten Nachricht deterministisch von Real”) bzw. Ideal”)
ab. Insbesondere ist auch S]({H) = sj+1(Real(j)) und S}”l) = sj+1(1deal(j)) fiir geeignete Funktionen
Sj+1-

Wir behaupten nun, daf fiir j € Ny

!
, , k
SD(Real?; Ideal ) < j ‘IL‘D() (89)
fs(k)

Der Fall 7 = 0 ist trivial, denn es ist Real® = R = Ideal®. Wir wollen die Aussage nun induktiv beweisen
und nehmen die Aussage fiir ein j als gegeben an.

Zunichst stellen wir fest, dafs fiir beliebiges a aus dem gemeinsamen Wertebereich A von Real”) bzw. Ideal?
gilt

SD(X(j‘H) |Real(j) = a; G+ |Ideal(j) =a) = SD(kast(a)vp’(k); Vk78j+1(a)7p’(k)) (2) P opl(k)_ (90)

— f3(k)

36Die Transitivitdt des sicheren Implementierens ergibt sich direkt aus der Komponierbarkeit.
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Wir setzten M := {m € X% : |m| < p'(k)} und rechnen
SD(RealV™); TdealV ™))
= SD(Real?, X1 Ideal?), v (+D)
21 Z P(Real?) =qa, XU+D = z) — P(IdealV) = a, VUTD = a:)‘

5

zeEM
a€A
=1 Z P(XUD) =z | Real”) = a) P(Real”) = q)
zeM . . .
acA ~P(VU) =2 | Tdeal? = a) P(ideal? = a)

P(X(jH) =z | Real? = a) P(Real?) = q)
— P(VUHY) = | Ideal”) = a) P(Real”) = a)
+ P(VUH) =g | 1deal’) = a) (P(Real? = a) - P(1deal” = a))|

El%

reM
a€A

< Z P(Real(ﬂ') =a) % Z ‘P(X(Hl) =z | Real® — a) _ P(V(j+1) . Ideal® — a)‘
acA zeM
+ % Z Z P(V(j+1) =z | Ideal”) = a) |P(Real(j) =a)— P(Ideal(j) _ a)|
a€A KGM )

'

=1
23" P(Real” = a) SD(XUH) | Real”) = a; VU | Ideal”) = a) + SD(Real”); Ideal?)
a€A

(00,89 p1op'(k)
< @G+ AT

Damit ist (89) bewiesen.

Da hochstens p'(k) Nachrichten der Form (source, -, -) vom Adversary an die Funktionalitdt geschickt werden,
stellen Real® ®) bzw. Ideal® *) simtlichen das Verhalten der Umgebung bestimmenden Zufall dar, also ist
die Ausgabe der Umgebung eine Funktion in einer dieser Zufallsvariablen (je nach dem, ob das Real-Life- oder
das ideale Modell vorliegt). Somit ist der statistische Abstand zwischen den Ausgaben nach oben beschriankt
durch

<2 p'(k) - pr o p' (k)

N f3(k)

Da der Zihler ein Polynom, der Nenner aber superpolynomiell ist, ist der statistische Abstand durch das
Inverse einer superpolynomiellen Funktion nach oben beschrinkt, damit realisiert Fy die Funktionalitdt JFy
sicher, es folgt der zu beweisende Satz. |

SD (Real” () 1deal® (¥)))

A.7 Zu Kapitel 7

A.7.1 Heuristik 7.2

Definition 7.1: Gewichtungstest

Es sei ¥ nichtleer und endlich, F' > 0, m,0 € £*, || > 0, € Rso, N € N, M € No, L € N, L > |ng|-
Dann sei b;(z) fiir z € £V der i-te Block der Linge L in z, also

bz(l') = $(i_1)L+1 TG
und n,(z) fir w € X die Anzahl der b;(x) mit b;(x) = w, also
IN/L]

ne(z) == Z 5(bi(z) = w).
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Weiter seien fiir p € 2¢7, L* := L — |mg|

(@) == 3 ngngl(a),

gexlel
ie) = Y nale),
penL®
fcp(x) . nWﬂ'Q(x) - 2_5’”‘4@(:6)

V(275 —272%)i,(x)
mit % = 0.
Dann ist die Testfunktion definiert durch

fr(@) =Y max{0, fy(«)}*

penL®

und der kritische Bereich K des Gewichtungstests fir n(...w; 0) > € mit Schranke F, Stichprobengrofse M
und Blocklinge L durch
K={zex": fr(z) > F oder i(z) < M}.

Weiterhin ist der kritische Bereich des Gewichtungstests fir n(...m; 0) = oo mit Stichprobengrifie M und
Blocklinge L
{rext: Jpe S ngre(x) # 0 oder a(z) < M}. O

Heuristik 7.2: Niveau des Gewichtungstests

Sei X eine Quelle iiber ¥, a € [0,1], m,0 € £*, |o| > 0, € RsgU {0}, N € N, M € No, L€ N, L > |mg|,
L* := L —|mg|.

Es sei F' € R~ mit
#x

2 # Y (#E.L*) (- (F) <o, (13

i=1 t
wobei x? die Verteilungsfunktion der Chi-Quadrat-Verteilung mit i Freiheitsgraden sei.

Es bezeichne K den kritischen Bereich des Gewichtungstests fiir 7)(...7; 0) < &€ mit Schranke F', Stichpro-
bengrofe M und Blockldnge L, und 7 sei wie in Definition 7.1.

Ist niX}(¢m; 0) > ¢ fiir alle € € ¥*, so gilt fiir groke M approximativ

P(X € Kund a(X) > M) < a. O

Begriindung: Heuristische Uberlegungen sind im folgenden kursiv gesetzt. Wir betrachten zunichst den Fall
£ < oo. Abkiirzend schreiben wir 7 := ntX} und N’ := |L/N]. Es gelte n(¢7; o) fiir alle € € X*.

Es sei fiir p € X7

HY = 6(b:i(X) = pmo),

ﬁf = 5(39 € xld bi(X) = <p7r§),
N’

N¥ = ﬁf
i=1

Es ist dann wegen n(&m; 0) < e fiir £ € ¥*
P(H;p =1 | IA{f =1, Hf"'Hffl = h) < 2—¢€ (h c {071}(1‘_1)),

und HY =0, falls H? = 0.
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A BEWEISE

Es seien dann BY := HY BY mit unabhiingigen Bin(2¢)-verteilten Zufallvariablen BY. Es ist dann
P(Bf =1| Hf =1) =27°,
und BY =0, falls H = 0.

Es folgt dann fiir t € R

S, HY — 27N S, B —27°N¢

(276 _ 2726)NL,0 (276 _ 272E)N<p

P(f,(X)>1) =P >t

>t| <P

v

=:B¥

Da BY fir H? = 1 Bin(27°)-Verteilung hat und fir H? = 0 verschwindet, kénnen wir ., BY als Summe von
N¥ Bin(27¢)-verteilten Zufallsvariablen betrachten, und nach dem Zentralen Grenzwertsatz fir groffes N¢ die
Zufallsvariablen B¥ als approximativ standardnormalverteilt und unabhdngig annehmen.

Dann ist also fiir unabhéngige, standardnormalverteilte Zufallsvariablen IV, approximativ

P(fo(X) 21) < P(BY > 1) = P(N, > 1),

also fiir /' > 0
P(max{0, f,(X)}* > F) < P(max{0, B¥}* > F).

Wir nehmen weiterhin an, daf$ die f,(X) voneinander weitgehend unabhdingig sind, und erhalten

P( 3 max{0, £,(X)}* > F) < P( 3" max{0, B¥)* > F) (91)

<P€EL* L,DGZL*
~

J

=fr(X)

Sind U¥ voneinander und von den B¢ unabhéingige Bin(3)-verteilte Zufallsvariablen, so haben U¢(B¥)? und
max{0, B¥}? die gleiche Verteilung (denn die Dichte von B ist symmetrisch um 0), es folgt

PUr(X) 2 ) SP( Y UA(B? 2 F)
peEXL”

S P UNBY 2 F (Uy), =u)

ue{0,1}3L" peRL®

> P(X (B 2F (U, =u) P(U), =)

ue{0,1}5%" pexL”

up=1
= Y (=X, w@)27#”
uE{O,l}EL*
w1 (u)#0
#x” L
_ L* #E
=2 Z( S )a-xEy
i=1
<a. (92)

Es folgt schliefslich

P(X €K A A(X)> M) =P((fr(X)>F vV a(X) < M) A #(X)> M)

(92)

<P(fr(X)>F) <a.
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Es bleibt der Fall € = co zu untersuchen. Es ist dann P(HY =0) =1firallei=1,...,N', p € »L7 also
P(X ek AN (X (EI(pEE nwrg( )#0 V n(X)< M)

A
<3<pezL Z H? £0 V i(X ) )

P
P(A(X) <M A #(X)> M)
0<

n(X) > M)
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Anhang B

Konfiguration von randomextract

Als Eingabe nimmt randomextract eine ASCII-Textdatei, deren Format im folgenden definiert wird. Alternativ
zu einer Lektiire dieser Spezifikation ist es auch mdéglich, RandomExtraction zu verwenden, um Beispieldateien
zu erhalten.

In der folgenden Spezifikation bezeichnet (integer) eine ganze Zahl, (real) eine Gleitkommazahl, und (word)
eine Zeichenkette aus Buchstaben und Ziffern. Der Inhalt der Datei ist das Nichtterminal (file):

(file) ::= (action) *

(action) = (test) | (showsource) | (showweight)

B.1 Quellen
Um eine Stichprobe einer Quelle anzeigen zu lassen, verwenden wir folgende Syntax:

(showsource) := ‘showsource’ ‘{’ ( (showsource-source) | (showsource-len) | ‘verbose’ |
‘totallen’ ) * ‘}’

(showsource-source) ::= ‘source’ (source)

(showsource-len) ::= ‘len’ (integer)

Hierbei gibt (showsource-source) die zu verwendende Quelle an (zur Syntax von (source) siehe unten) und
(showsource-len) die Anzahl auszugebener Symbole. Ist zusétzlich ‘verbose’ angegeben, so werden zusétzliche
Informationen mit ausgegeben, und ist ‘totallen’ spezifiziert, so wird am Ende ausgegeben, wieviele Symbol
die Quelle insgesamt produziert hat (selbst wenn dies (showsource-len) iibersteigt).?”

Eine Quelle wird in der folgenden Form spezifiziert:

(source) = (lsbfile-source) | (stupiddeterministic-source) | (linuzkernel-source) | {fizedlen-source) |
(crng-source) | (skipprefiz-source) | (hash-source) | (drop-source) | (adversarialchmm-source) |
(explicit-source) | (biased-source) | (adaptive-source) | (autocorrelation-source)

Die verschiedenen Quellentypen werden jeweils durch eines dieser Nichtterminale ausgewahlt.
Um bindre Zufallsdaten aus einer Datei zu lesen, kann die folgende Quelle benutzt werden:
(Isbfile-source) ::= ‘lsbfile’ (word)

Hierbei gibt der Parameter (word) den Namen einer lesbaren Datei an. Diese wird byteweise gelesen, und in
jedem Byte wird beim niederwertigsten Bit begonnen.

Zu Testzwecken mag die folgende bindre Quelle dienen:
(stupiddeterministic-source) := ‘stupiddeterministic’ (stupiddeterministic-type)
(stupiddeterministic-type) ::= ‘concat’ | ‘fixedlen’

Diese Quelle ist deterministisch, d.h. die Stichprobe ist immer die gleiche. Hat (stupiddeterministic-type) den
Wert ‘concat’, so werden die Zahlen 1,2, ... bindr dargestellt (mit dem niederwertigsten Bit zuerst) und dann
konkateniert. Bei ‘fixedlen’ wird ebenso verfahren, jedoch werden die Zahlen vor der Konkatenation mit
vorlaufenden Nullen dargestellt, so dafs alle eine Lange von 32 Bit haben.

Unter Linux kann die folgende Quelle genutzt werden:
(linuzkernel-source) ::= ‘linuxkernel’ (linuzkernel-type)
(linuzkernel-type) ::= ‘pseudo’ | ‘real’

Hier wird der Zufallszahlengenerator des Linux-Kernels verwendet. Ist ‘pseudo’ angegeben, so wird der Pseu-
dozufallszahlengenerator verwendet (/dev/urandom), sonst der Zufallszahlengenerator (/dev/random).

Um eine Quelle nach einer bestimmten Linge terminieren zu lassen, verwende man die folgende Syntax:

37THort die Quelle nicht auf, Daten zu liefern, so terminiert randomextract mit der Option ‘totallen’ nicht.
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(fizedlen-source) ::= ‘fixedlen’ ‘{’ ( (fizedlen-subsource) | (fizedlen-len) ) * ‘}’
(fizedlen-subsource) ::= ‘source’ (source)
(fizedlen-len) ::= ‘length’ (integer)

Diese Quelle entnimmt die Stichprobe der durch (fizedlen-subsource) angegebenen Quelle, und wenn diese
Stichprobe langer als (fizedlen-len) Symbole ist, wird sie auf diese Lénge gekiirzt (es wird also ein Prifix der
entsprechenden Liange ausgegeben).

Zufillige Quellen beliebiger Alphabetsgrofe simulieren wir mittels:
(erng-source) = ‘crng’ (integer)
Es bestimmt (integer) die Alphabetgrofse n, zum Erzeugen der Folge wird die C-Funktion rand () %n verwandt.

Um von einer Quelle einen Prefix fester Lange zu entfernen, dient

(skipprefiz-source) = ‘skipprefix’ ‘{’ ( (skipprefiz-subsource) | (skipprefiz-prefizlen) ) * ‘}
(skipprefiz-subsource) ::= ‘source’ (source)
(skipprefiz-prefizlen) ::= ‘prefix’ (integer)

Diese Quelle nimmt eine Stichprobe von (skipprefiz-subsource) und entfernt die ersten (skipprefiz-prefizlen)
Symbole.

Soll zu Testzwecken eine bestimmte Symbolfolge als Quelle verwendet werden, so kann man folgende Syntax
nutzen:

explicit-source) ::= ‘explicit’ ‘{’( (explicit-alphabet) | (explicit-data) | (explicit-repeatfrom) ) * ‘}’
explicit-alphabet) ::= ‘alphabet’ ‘{’ (word) + ‘}’
explicit-data) ::= ‘data’ ‘{’ (word) * ‘¥’

explicit-repeatfrom) ::= ‘repeatfrom’ (integer)

o~ o~~~

Die in (ezplicit-alphabet) angegebene Folge von (word) spezifiziert das Alphabet der Quelle, die auszugebenen
Symbole werden durch (ezplicit-data) bestimmt.

Wird (explicit-repeatfrom) angegeben, so wiederholt sich die Folge immer wieder, wobei ab dem zweiten
Durchlauf die in (ezplicit-repeatfrom) angegebene Anzahl von Symbolen weggelassen wird. Wurde hingegen
(explicit-repeatfrom) nicht angegeben, so terminiert die Quelle nach einmaliger Ausgabe der Folge.

Wird (ezplicit-alphabet) nicht angegeben, so wird das Alphabet automatisch aus (ezplicit-data) erzeugt.
Die interne Numerierung des Alphabets (wichtig z. B. fiir {autocorrelation-source) u. a.) richtet sich dann nach
der Reihenfolge des Vorkommens in {explicit-data).

Eine unabhéngig identisch verteilte bindre Quelle beschreibt
(biased-source) ::= ‘biased’ ‘{’ (biased-bias) ‘}’
(biased-bias) ::= ‘bias’ (real)
Die in (biased-bias) angegebene Wahrscheinlichkeit ist die fir das Ausgeben einer 1.

Um Korrelationen in den Daten zu untersuchen, bietet sich folgendes an:

(autocorrelation-source) ::= ‘autocorrelation’ ‘{’ ( (autocorrelation-subsource) |
(autocorrelation-delay) ) * ‘¥

(autocorrelation-subsource) ::= ‘source’ (source)

(autocorrelation-delay) := ‘delay’ (integer)

Sei X die durch (autocorrelation-subsource) spezifizierte Quelle. Dann gibt (autocorrelation-source) die Folge
(X; + Xitr mod n) aus, wobei n die Kardinalitédt des Alphabets und 7 durch (autocorrelation-delay) bestimmt
sei. Fiir die Addition wird hier (wie auch bei allen weiter unten beschriebenen Quellen, die mit Symbolen
rechnen) die interne Numerierung des Alphabets zugrundegelegt, die evtl. von der durch die Symbolnamen
implizierten abweichen kann.

Zur Simulation von CHMM-Quellen dient
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(adversarialchmm-source) ::= ‘adversarialchmm’ ‘{’ ( (adversarialchmm-chmm) |
(adversarialchmm-strategylen) ) * ‘3’

(adversarialchmm-chmm) ::= ‘chmm’ (chmm)

(adversarialchmm-strategylen) ::= ‘strategylen’ (integer)

Diese Quelle generiert Symbolfolgen, deren Verteilung der dem in (adversarialchmm-chmm) spezifizierten
CHMM geniigen (siehe Definition 5.3).

Dabei legt sich die Quelle auf eine Strategie zum Generieren der Symbole fest (z. B. die Ausgabe moglichst
wenig zu verdndern, moglichst viel zu verédndern, ein festes Symbol moglichst oft auszugeben), die sie dann
unter Beachtung der vom CHMM vorgeschriebenen Transitionsbereiche zu verfolgen versucht.

Die gewihlte Strategie wird nach einer festen Anzahl von Symbolen neu gewihlt, diese Anzahl ist durch
(adversarialchmm-strategylen) zu bestimmen.

Zur Syntax von {chmm) siche Abschnitt B.4.

Das blockweise Anwenden von Hashfunktionen ist wie folgt realisierbar:

(hash-source) ::= ‘hash’ ‘{’ ( (hash-subsource) | (hash-sourceblock) | (hash-targetblock) |
(hash-hash) ) * ‘¥

(hash-subsource) ::= ‘source’ (hash)

(hash-sourceblock) ::= ‘sourceblock’ (integer)

(hash-targetblock) ::= ‘targetblock’ (integer)

(hash-hash) ::= ‘hash’ (hash)

Die Ausgabe der Quelle (hash-subsource) wird in Blocke der Linge (hash-sourceblock) zerlegt und auf jeden
dieser Blocke die Hashfunktion (hash-hash) angewandt, so daf Blocke der Grofe (hash-targetblock) heraus-
kommen. (Zur Syntax von {hash) siche Abschnitt B.5.)

Um aus einem Datenstrom nur Blocke mit einer gewissen minimalen Symbolgewichtung auszuwéhlen,
verwende man:

(drop-source) ::= ‘drop’ ‘{’ ( (drop-subsource) | (drop-weight) | (drop-blocklen) | (drop-limit) ) » ‘}’
(drop-weight) ::= ‘weight’ (weighting)

(drop-blocklen) ::= ‘blocklen’ (integer)

(drop-limit) ::= ‘1limit’ (real)

Dieser Extraktor zerlegt die Daten von {drop-subsource) in Blocke der Lénge (drop-blocklen) und gibt davon
nur die aus, deren durch (drop-weight) bestimmte Symbolgewichtung mindestens (drop-limit) betragt. Zur
Syntax von (weight) siehe Abschnitt B.2.

Die adaptive Extraktion (Definition 4.7) schlieflich implementiert:
(adaptive-source) ::= ‘adaptive’ ‘{’ ( (adaptive-subsource) | (adaptive-blocklen) | (adaptive-weight) |
(adaptive-hash) | (adaptive-spare) ) * ‘}’
adaptive-subsource) ::= ‘source’ {source)

adaptive-blocklen) ::= ‘blocklen’ {integer)

(

(

(adaptive-weight) ::= ‘weight’ (weighting)
(adaptive-hash) ::= ‘hash’ (hash)
(adaptive-spare) ::= ‘spare’ (real)

Es spezifizieren

e (adaptive-subsource) die Quelle X,

adaptive-blocklen) die Blockldnge n,

(
(

e (adaptive-weight) die Symbolgewichtung 7,
(adaptive-hash) die Familie von Hashfunktionen h,
(

e (adaptive-spare) die Konstante ¢ > 0.
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Dann ist (adaptive-source) die Quelle =" (R, X), wobei m wie in Korollar 4.9 definiert sei.

Um die Aussage von Korollar 4.9 anwenden zu koénnen, mufs man zwischen den Extraktor und die Ur-
sprungsquelle noch ein (fizedlen-source) schalten, es sei denn, man nimmt die in Korollar 4.9 verwendete
Maximallidnge [ als so grofs an, daf ein Erreichen dieser Linge unrealistisch ist.

Dieser Extraktor kann auch verwendet werden, um die Extraktionsrate fiir eine bestimmte Quelle praktisch
zu bestimmen. Hierzu beschrinkt man den aus der Quelle ausgegebenen Datenstrom auf eine bekannte Linge
N (z.B. N = 10%) und wendet den Extraktor darauf an. Aus der resultierenden Linge (welche z.B. mit
(showsource) in Verbindung mit der Option ‘totallen’ bestimmt werden kann) und N kann dann die Rate
bestimmt werden. Da nur die Lange der Ausgabe relevant ist, bietet sich aus Geschwindigkeitsgriinden die
Verwendung der Hashfunktion (hash-fake) (siehe Abschnitt B.5) an.

B.2 Symbolgewichtungen

Um die Daten aus einer Quelle anzeigen und gewichten zu lassen, verwende man
(showweight) ::= ‘showweight’ ‘{’ ( (showweight-weight) | (showweight-source) | (showweight-len) |
‘verbose’ | (showweight-blocklen) ) * ‘}’

showweight-weight) ::= ‘weight’ (weighting)

showweight-source) ::= ‘source’ (source)

showweight-len) ::= ‘len’ (integer)

o~ o~~~

showweight-blocklen) ::= ‘blocklen’ (integer)

Es spezifiziere (showweight-weight) die Symbolgewichtung n und (showweight-source) die Quelle X. Weiter sei
N durch (showweight-len) und n durch (showweight-blocklen) gegeben. Es werden dann die Gewichtungen

(X1 Xznyn; X—nng1 - - Xin)

firi=1,..., | N/n] angezeigt. Ist noch ‘verbose’ gegeben, wird die Ausgabe mit zusétzlichen Informationen
versehen.
Die Symbolgewichtung selbst wird spezifiziert durch

(weighting) := (weighting-explicit) | (weighting-table) | (weighting-relax) | (weighting-chmm)

Explizites Angeben einer Symbolgewichtung ist dann moglich mit

(weighting-explicit) = ‘explicit’ ‘{’ ( (explicit-symbols) | (explicit-prefizlen) | (explicit-blocklen) |
(explicit-weightdata) ) * ‘¥’

(explicit-symbols) ::= ‘symbols’ ‘{’ (word) + ‘¥’

(explicit-prefizlen) ::= ‘prefixlen’ (integer)

(explicit-blocklen) ::= ‘blocklen’ {integer)

(explicit-weightdata) ::= ‘data’ ‘{’ (explicit-entry) * ‘}’

(explicit-entry) == (word) * 3’ (word) + ‘=> (real)

Es seien n und m durch (ezplicit-blocklen)®® bzw. (explicit-prefizlen) und ¥ durch (ezplicit-symbols) spezifiziert.
Dann spezifiziert (weighting-ezplicit) eine Symbolgewichtung n iiber ¥ mit

n(&m; 0) = n(m; o) (meX™ peX” {eX").

Dabei wird jedes n(m; 0) (7 € ¥™, 9 € ¥") durch ein (explicit-entry) bestimmt. Dies besteht aus 7 vor ‘;” und
o nach ‘;’, hinter ‘->’ steht der Wert von 7(7; 0) (also w *;” o ‘->" n(7; 0)).
Ist ein n(7; o) nicht spezifiziert, so wird n(7m; 0) = 0 angenommen.

Fiir n(a; f) mit |a] # n wird mittels Lemma 4.2 aus den n(&7; 0) eine untere Abschitzung berechnet.

Insbesondere zur effizienteren Nutzung von konditioniert links-zeitinvarianten Quellen dient

(weighting-table) ::= ‘table’ ‘{’ ( (table-subweighting) | (table-prefizlen) | (table-blocklen) ) * ‘}’
(table-subweighting) ::= ‘weight’ (weight)

38Tn der aktuellen Version kann nur n = 1 sein. Deshalb darf (ezplicit-blocklen) auch weggelassen werden.
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(table-symbols) ::= ‘symbols’ ‘{’ (word) + ‘¥’
(table-prefizlen) ::= ‘prefixlen’ (integer)
(table-blocklen) ::= ‘blocklen’ (integer)

Fiir die durch (weighting-table) bestimmte Symbolgewichtung gilt alles oben fiir (weighting-explicit) gesagtes,
mit der Ausnahme, daff ¥ und alle n(7; 0) (7 € £™, p € ¥") von der durch (table-subweighting) spezifizierten
Symbolgewichtung 7’ ibernommen werden, also

n(&mr;0) = n(m o) =n'(7; 0) (reX™, peX” £eX).

Ist eine Symbolgewichtung gegeben, und soll diese um einen gewissen Betrag vermindert werden (z. B. um
die Chancen zu verbessern, daff es sich um eine untere Schranke fiir die tatséchliche Symbolgewichtung
handelt), so kann folgende Syntax verwendet werden:

(weighting-relax) = ‘relax’ ‘{’ ( (relaz-subweighting) | (relax-amount) | (relaz-type) ) * ‘¥’

(relaz-subweighting) ::= ‘weight’ (weight)

(relaz-amount) ::= ‘amount’ (real)

(relax-type) ::= ‘persymbol’ | ‘perblock’
Ist dann 7’ die durch (relaz-subweighting) spezifizierte Symbolgewichtung und e durch (relaz-amount) gegeben,
so reprisentiert (weighting-relazx) die Symbolgewichtung 7 mit

(o 2) max{n'(a;z) — |zle, 0}, falls (relaz-type) den Wert ‘persymbol’ hat,
;) =
7 max{n'(a;z) — ¢, 0}, falls (relaz-type) den Wert ‘perblock’ hat.

Ist ein CHMM gegeben, so interessiert die zugehorige Symbolgewichtung:
(weighting-chmm) ::= ‘chmm’ (chmm)

Hierdurch wird die Gewichtung 7¢ angegeben,?® wenn C das durch (chmm) definierte CHMM ist. Siehe Ab-
schnitt B.4 zur Syntax von (chmm).

B.3 Tests
Tests konnen mittels folgender Syntax durchgefiihrt werden:
(test) ::= (frequency-test) | {autocorrelation-test) | (serial-test) | (run-test) | (maurer-test) |
(weighting-test)
(generic-test-param) ::= (test-param-source) | (test-param-length) | (test-param-level)
(test-param-source) ::= ‘source’ (source)
(test-param-length) ::= ‘length’ (integer)
(test-param-level) ::= ‘level’ (real)

Hierbei bestimmt (test-param-source) die zu testende Quelle (zum Format siehe Abschnitt B.1), weiterhin
(test-param-length) die Lénge der Stichprobe und (test-param-level) das Niveau des Tests.

Der Haufigkeitstest (Abschnitt 7.1.1) wird wie folgt beschrieben:

(frequency) ::= ‘frequency’ ‘{’ (generic-test-param) * ‘}’

Der Autokorrelationstest (Abschnitt 7.1.4) hat diese Syntax:
(autocorrelation-test) := ‘autocorrelation’ ‘{’ ( (generic-test-param) | (test-param-delay) ) * ‘¥’
(test-param-delay) ::= ‘delay’ (integer)

Die Verzogerung im Autokorrelationstest (in Abschnitt 7.1.4 mit 7 bezeichnet) wird durch (test-param-delay)
bestimmt.

Den Serientest (Abschnitt 7.1.2) erhélt man durch

39giehe Definition 5.3
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(serial-test) ::= ‘serial’ ‘{’ ( (generic-test-param) | (test-param-blocklen) ) * ‘}’

(test-param-blocklen) ::= ‘blocklen’ (integer)
Hier wird die Blockldnge (L in Abschnitt 7.1.2) durch (test-param-blocklen) bestimmt.

Der Lauflingentest (Abschnitt 7.1.3) wird konfiguriert durch

(run-test) ::= ‘run’ ‘{’ ( (generic-test-param) | (test-param-mazrunlen) ) * ‘¥’

(test-param-mazrunlen) ::= ‘maxlen’ (integer)

Die maximale Lauflinge (L in Abschnitt 7.1.3) wird durch (test-param-mazrunlen) angegeben.

Ueli Maurers Universaltest (Abschnitt 7.1.5) beschreibt:

(maurer-test) ::= ‘maurer’ ‘{’ ( (generic-test-param) | (test-param-blocklen) | (test-param-prefizlen) ) * ‘}’
(test-param-blocklen) ::= ‘blocklen’ (integer)
(test-param-prefizlen) ::= ‘prefix’ (integer)

Dabei gibt (test-param-blocklen) die Blockldnge (L in Abschnitt 7.1.5) und (test-param-prefizlen) die Lénge
des Prifixes fiir die Vorverarbeitung (in Symbolen, nicht in Blécken; in Abschnitt 7.1.5 als @) bezeichnet) an.

Den Gewichtungstest aus Abschnitt 7.2 erhdlt man iiber

(weighting-test) == ‘weighting’ ‘{’ ( (generic-test-param) | (test-param-blocklen) |
(test-param-weightprefiz) | (test-param-weightblocklen) | (test-param-weight) |
(test-param-samplesize) | (test-param-estimate) ) * ‘¥’

test-param-blocklen) ::= ‘blocklen’ (integer)
test-param-weightprefiz) ::= ‘weightprefix’ (integer)
test-param-weightblocklen) ::= ‘weightblocklen’ (integer)
test-param-weight) ::= ‘weight’ (weighting)

test-param-samplesize) ::= ‘samplesize’ (integer)

o~ o~ o~ o~~~

test-param-estimate) ::= ‘estimate’

Hierbei bestimmen (test-param-blocklen) die Blocklinge (L in Definition 7.1), (test-param-weightprefiz) die
Lénge von 7, (test-param-weightblocklen) die Lange von p. Weiter bestimmt (test-param-weight) eine Symbol-
gewichtung 7, siehe Abschnitt B.2 zum Format von {weight). Die Stichprobengrofie M wird schliefslich durch
(test-param-samplesize) bestimmt (M := 0, falls keine Stichprobengréfe angegeben wird).

Es wird dann fiir alle 7,0 € ¥* der vorgegebenen Liange der Gewichtungstest fiir n(...7;0) > & mit
Stichprobengrofe M durchgefiihrt, wobei ¥ das Alphabet der durch (test-param-source) spezifizierten Quelle
ist und ¢ := 7q(7; 0).

Ist (test-param-estimate) gegeben, so mufl keine Symbolgewichtung angegeben werden, sondern es wird
eine Schitzung fiir n erstellt, die gerade so grofs ist, daf sie fiir die gegebene Stichprobe den Test fiir alle 7, o
besteht.

Die Ausgabe dieses Tests enthélt am Ende noch eine Ausgabe der geschitzten bzw. getesteten Quelle in fiir
randomextract lesbarer Form (Nichtterminal (weighting), siche Abschnitt B.2), wobei im Falle der getesteten
Quelle alle Funktionswerte von 7, die den Test nicht bestanden haben, auf 0 gesetzt werden.

B.4 CHMM

Ein CHMM C wird wie folgt angegeben:
(chmm) ::= ‘L’ ( (chmm-symbols) | (chmm-states) | (chmm-transitions) ) * ‘}’
(chmm-symbols) ::= ‘symbols’ ‘{’ (word) + ‘}’
(chmm-states) ::= ‘states’ ‘{’ (word) + ‘¥’
(chmm-transitions) ::= ‘transitions’ ‘{’ (transition-domain) * ‘}’
(transition-domain) ::= (word) (probability-set)
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B KONFIGURATION VON RANDOMEXTRACT

Diese Deklaration besteht aus drei Teilen: Zuerst werden mit (chmm-symbols) bzw. (chmm-states) das Alpha-
bet ¥ = ¢ und die Zustandsmenge ) = ()¢ angegeben. Danach werden in (chmm-transitions) die Transi-
tionsbereiche definiert. Jedes (transition-domain) besteht aus dem Namen eines Zustands ¢ und danach einer
Teilmenge von IR?XQ, angegeben durch (probability-set).

Eine Teilmenge von lRlzXQ kann auf zwei Arten geschrieben werden:

(probability-set) ::= (interval-probability-set) | (convez-probability-set)

Die erste Art eignet sich zur Darstellung von Quadern (genaugenommen zur Darstellung von Quadern

geschnitten mit R} *¥):

interval-probability-set) ::= ‘interval’ ‘{’ (arrow-probability) * ‘}’

(
(arrow-probability) ::= (transition) (interval)
(transition) ::= (word) (word)

(

interval) = (real) | ‘[’ (real) ‘,’ (real) ‘1’

Diese Darstellung lehnt direkt an die Darstellung des CHMM durch ein Diagramm an. Zu jedem vom ak-
tuellen Zustand ausgehenden Pfeil existiert eine (arrow-probability). Dieses Nichtterminal besteht wiederum
aus der Bezeichnung des Pfeils ({transition), bestehend aus Zielzustand und auszugebendem Symbol) und ei-
nem abgeschlossenen Teilintervall von [0, 1] (fallen Minimum und Maximum des Intervalls zusammen, so kann
stattdessen auch eine Zahl angegeben werden). Ein Beispiel fiir (transition-domain) ware dann

q interval { a 1 [0,1] a 0 [0,.5] b0 .2}%}
Dies entspréche folgendem Teildiagramm:

[0,1]:1

O___0——0

0,0,5] : 0

Beliebige endlich reprisentierbare CHMM lassen sich bis auf konvexe Aquivalenz mit folgender Syntax
beschreiben:

(convez-probability-set) ::= ‘convex’ ‘{’ (vertex) + ‘}’

(vertex) ::= ‘point’ ‘{’ (arrow-probability) * ‘}’

Ein (convex-probability-set) besteht aus mehreren Eckpunkten (vertez), von denen jeder einen Quader oder
Punkt im ]REgQ beschreibt (die Semantik ist analog zu (interval-probability-set) oben). Dann ist der von
(convex-probability-set) beschriebene Transitionsbereich C, die konvexe Hiille aller dieser Quader und Punkte.
Die Quader sollten mdoglichst klein sein, man versuche, beim Entwurf mit Punkten zu arbeiten, und danach
die Punkte, die sich nicht exakt auf dem Computer darstellen lassen, durch einen minimalen umschliefsenden
Quader zu ersetzen (z.B. schreiben wir [0.33333333, 0.33333334] fiir 1).
Als Beispiel diene die Datei notinterval.chmm.

Alle in dieser Arbeit vorgestellten CHMM sind der Software beigefiigt, sie haben Dateinamen der Form * . chmm.

B.5 Hashfunktionen

Eine Hashfunktion wird wie folgt spezifiziert:

hash) ::= (hash-toeplitz) | (hash-fake)

hash-toeplitz) ::= ‘toeplitz’ ‘{’ ( (toeplitz-random) | ‘triangle’ | ‘check’) ‘}’
toeplitz-random) ::= ‘random’ (source)

hash-fake) ::= ‘fake’

o~ o~~~
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B.5 Hashfunktionen

Man sieht, dafs bei keiner der Hashfunktionen die Lange der Ein- oder Ausgabe spezifiziert ist. Dies liegt daran,
dafs diese von verwendenden Kontext bestimmt wird (z.B. von der Blockldnge des Extraktors). Andererseits
enthilt das so konstruierte Objekt bereits den in die Hashfunktion einfliefenden initialen Zufall, es handelt
sich formal also um eine Zufallsvariable H der Form

H: N xNx X* — *
n, m, (ala"'aan) — (bla"'abm)‘

Der einzige implementierte Typ von universellen Quasi-Hashfunktionen ist (hash-toeplitz), dieser realisiert das
Anwenden von Toeplitz-Matrizen (wie in Lemma 3.10). Mit (toeplitz-random) kann eine Quelle angegeben wer-
den, der der initiale Zufall zu entnehmen ist, Voreinstellung ist unter Linux der Kernel-Zufallszahlengenerator
(linuxkernel real), sonst der C-Pseudozufallszahlengenerator (crng 2).

Ist ‘check’ gegeben, so wird die Applikation der Toeplitz-Matrix zuséitzlich zu dem optimierten Verfahren
mit einem langsamen aber einfachen Verfahren durchgefiihrt und die Ergebnisse verglichen. Dies dient zur
Verifikation der Software und hat keinen Einfluf auf das Ergebnis.

Ist ‘triangle’ gegeben, so wird statt einer zufilligen Toeplitz-Matrix eine zufillige Toeplitz-Matrix mit
konstant 1 auf der Diagonale und konstant 0 unterhalb der Diagonale verwendet. Dann ist (hash-toeplitz)
allerdings keine universelle Quasi-Hashfunktion mehr.

Die aktuelle Implementation von (hash-toeplitz) kann nur auf einem Alphabet der Grofie 2 operieren.

Interessiert das Ergebnis der Hashfunktion nicht, sondern nur dessen Linge, so kann (hash-fake) genutzt
werden. Hier ist die Ausgabe nicht spezifiziert, dafiir ist die Evaluation dieser Funktion wesentlich schneller
moglich. Man kann (hash-fake) beispielsweise benutzen, um die Rate eines Extraktionsverfahrens effizienter
zu bestimmen.
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Anhang C

Definitionen und Aussagen

Definition
Definition
Definition
Definition
Definition
Lemma
Definition
Lemma
Lemma
Definition
Definition
Lemma
Lemma
Definition
Lemma
Definition
Lemma
Satz
Lemma
Lemma
Lemma
Lemma
Lemma
Definition
Lemma
Definition
Definition
Definition
Lemma
Definition
Satz
Korollar
Definition
Lemma
Definition
Definition
Definition
Lemma
Satz
Definition
Lemma

Definition

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Quelle

Familie von Quellen

Entropie

min-Entropie

Renyi-Entropie

Abschitzungen der min-Entropie

Statistischer Abstand

Statistischer Abstand

Eigenschaften des statistischen Abstands

Perfekt zufillig

e-zuféllig

Konkatenation von Zufallsquellen

Unmoglichkeit deterministischer Extraktion
Universelle Hashfunktion

Leftover Hash Lemma, 1. Fassung

Universelle Quasi-Hashfunktion

Leftover Hash Lemma, 2. Fassung

Leftover Hash Lemma

Affine Transformationen als universelle Hashfunktion
Affine Toeplitz-Transformationen als universelle Hashfunktion
Lineare Abbildungen als universelle Quasi-Hashfunktion
Toeplitz-Transformationen als universelle Quasi-Hashfunktion
Vergrofserung des initialen Zufalls einer Hashfunktion
Symbolgewichtung

Komposition von Symbolgewichtungen
Links-zeitinvariante Familien von Quellen
Rechts-zeitinvariante Familien von Quellen
Konditioniert links-zeitinvariante Familien von Quellen
Verschiebung von Symbolgewichtungen

Adaptiver Hash-Extraktor ="

Adaptive Extraktion

Adaptive Extraktion

Rate

Rate einelementiger Quellen

CHMM

CHMM-Adversary

CHMM-Quelle

Zeitinvarianz von CHMM-Familien

Berechnung der Symbolgewichtung von CHMM
Konvexe Aquivalenz

Konvex-dquivalente CHMM

Endlich reprasentierbare CHMM
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19
19
19
19
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21
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25
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30
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Lemma
Lemma
Definition
Definition
Definition
Definition
Definition
Definition
Satz
Definition
Heuristik
Hilfsatz
Hilfsatz
Hilfsatz
Hilfsatz

5.9
5.10
6.1
6.2
6.3
6.4
6.5
6.6
6.7
7.1
7.2
A25
A28
A33
A34

Représentierbarkeit von durch Diagramme definierten CHMM
Konvexitit der Rekursion in Satz 5.5

Parametrische Familie von Quellen

Exponentiell /superpolynomiell /perfekt zufillig
Funktionalitdt Frpa,x: Nicht abbrechende Zufallsquelle
Funktionalitdt Farna,»: Abbrechende Zufallsquelle
Funktionalitit Fy: Quellenfamilie X

Simulierbare Familie von Quellen

Sicherheit von Fy

Gewichtungstest

Niveau des Gewichtungstests

Einschrénkung von Gleichverteilungen
Transitionswahrscheinlichkeiten im CHMM

Konvexitat einiger Operationen

Probabilistische Unentscheidbarkeit
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E SYMBOLVERZEICHNIS

E Symbolverzeichnis

M*

A*

Ty

||

1

(Ed15

1,

Adve

Cq
FARnd,®
FRnd,x
Fx
H(X)
Hoo(X)
Hgen(X)
L\;‘

inf

SD(V;V||E)
SD(Y;1)

sup
Toeplitz(IF"%")
XA

XC

5(A)

=
[

X

[ > 3

n,m
1,h

Abbrechende Folgen iiber M

initiale Verteilung des CHMM-Adversaries A
Konkatenation von x und y

Lange der Folge z

undefiniertes Ergebnis

Betragssummennorm von z

Einheitsmatrix in <"

Menge aller Adversaries zum CHMM C
Transitionsbereich des CHMM C vom Zustand ¢ aus

Funktionalitdt. Modelliert abbrechende Zufallsquelle iiber X
Funktionalitdt. Modelliert nicht abbrechende Zufallsquelle iiber ¥
Funktionalitdt. Modelliert die parametrische Quellenfamilie A’

(Shannon-)Entropie von X

min-Entropie von X

Renyi-Entropie von X

Indexmenge der parametrischen Familie von Quellen X
Infimum

Logarithmus zur Basis 2 (log,)

Maximum

Minimum

Folgen iiber M

Menge der natiirlichen Zahlen ohne 0

Folgen tiber M, erster Index ist O

Menge der natiirlichen Zahlen einschliefslich der 0
Wahrscheinlichkeitsverteilung mit B = b
Zustandsmenge des CHMM C

Menge der reellen Zahlen

Rate der Quellenfamilie X

Rate der Quellenfamilie X' mit der Symbolgewichtung 7
Rate der Quelle X in der Quellenfamilie X

Rate der Quelle X mit der Symbolgewichtung 7
Menge der nichtnegativen reellen Zahlen

Menge der positiven reellen Zahlen

normierte Elemente von R,

Kurzform fiir SD(X|E; Y|E_)

statistischer Abstand zwischen X und Y
Supremum

(m x n)-Toeplitz-Matrizen

CHMM-Quelle zum Adversary A

Familie aller C-Quellen (C CHMM)

Ist die Aussage A wahr, dann §(A) = 1, sonst §(A) =0
Symbolgewichtung zum CHMM C
Symbolgewichtung der Familie X von Quellen
leeres Wort

adaptiver Hash-Extraktor
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30
29
39

40
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12
12
12
13
12
13
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13
29
12
25
25
25
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12
12
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12
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Alphabet der Familie X' von Quellen
Alphabet des CHMM C

Anzahl Vorkommen von ¢ in =
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statistischer, 15
(action), 96
(adaptive-blocklen), 98
adaptive Extraktion, 10
(adaptive-hash), 98
adaptiver Hash-Extraktor, 23
(adaptive-source), 98
adaptive-spare), 98
adaptive-subsource), 98
adaptive-weight), 98
adversarialchmm-chmm), 98
adversarialchmm-source), 98
adversarialchmm-strategylen), 98
Adversary

CHMM-, 30

in Sicherheitsmodellen, 38
Alphabet, 13
Alternative, 42

o~~~ o~ o~

dquivalent
fast konvex-, 34
konvex-, 34

(arrow-probability), 102
Art

Fehler erster, 42

Fehler zweiter, 42
autocorrelation-delay), 97
autocorrelation-source), 97
autocorrelation-subsource), 97
autocorrelation-test), 100
autocorrelation test, 43
Autokorrelationstest, 43

P N

Bereich

kritischer, 42
beschriankt

einseitig, CHMM, 32

symmetrisch, CHMM, 32
Bias

fester

CHMM mit, 32

(biased-bias), 97
(biased-source), 97
blockierendes CHMM, 33

Canetti-Model, 38

(chmm), 101

CHMM, 28-29
blockierend, 33
einseitig beschrankt, 32
endliches, 35
endlich représentierbares, 35
fast endlich reprisentierbares, 35
fiir Gleichverteilung, 31

mit festem Bias, 32

mit uneingeschrinktem Adversary, 32

Miinchner Quelle, 48

Quelle, 31

symmetrisch beschrankt, 32
CHMM-Adversary, 30
CHMM-Quelle, 30
(chmm-states), 101
(chmm-symbols), 101
(chmm-transitions), 101
controlled HMM, 28-29
(convez-probability-set), 102
C-Quelle, 31
(erng-source), 97

Dank, 51

distance
statistical, 15

drop-blocklen), 98

drop-limit), 98

drop-source), 98

drop-weight), 98

P N

einseitig beschrankt

CHMM, 32
endliches CHMM, 35
endlich représentierbares CHMM, 35

fast, 35
Entropie, 14

min-, 14

Quelle mit garantierter, 26

Renyi-, 14

Shannon-, 14
environment, 38
erste Art

Fehler, 42
exakt simulierbar

Familie von Quellen, 41
(explicit-alphabet), 97
(explicit-blocklen), 99
(explicit-data), 97
(explicit-entry), 99
(explicit-prefizlen), 99
(explicit-repeatfrom), 97
(explicit-source), 97
(explicit-symbols), 99
(explicit-weightdata), 99
exponentiell zufillig, 37
Extraktion

adaptive, 10

Von-Neumann-, 8
Extraktor

adaptiver Hash-, 23

Familie von Quellen, 14
Beispiele, 26
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exakt simulierbare, 41
Funktionalitét fiir, 40
parametrische, 37
simulierbare, 40
fast endlich repréisentierbares CHMM, 35
fast konvex-dquivalent, 34
Fehler
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zweiter Art, 42
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CHMM mit, 32
file), 96
fizedlen-len), 97
fizedlen-source), 97
fizedlen-subsource), 97
(frequency), 100
frequency test, 42
Funktionalitat
fiir abbrechende Zufallsquelle, 39
fiir nicht abbrechende Zufallsquelle, 39
fiir Quellenfamilien, 40
ideale, 37

P N

(generic-test-param), 100
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Symbol-, 21
Beispiele, 26
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Gleichverteilung
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Hash-Extraktor
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(hash-fake), 102
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universelle, 17
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(hash-hash), 98
hash lemma

leftover, 17-19
hash-source), 98
hash-sourceblock), 98
hash-subsource), 98
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(hash-toeplitz), 102
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HMM

controlled, 28-29

kontrolliertes, 2829
Hypothese, 42

P N

ideale Funktionalitét, 37
(interval), 102
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Kolmogorov-Test, 44
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konvex-dquivalent, 34

fast, 34
kritischer Bereich, 42

Lauflangentest, 43

leeres Wort, 13
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