
Quantum Algorithms:
Support Vector Machines
Jan Lohse

September 3, 2024

Contents
1. Introduction .. 3
2. Preliminaries .. 4

2.1. Notation ... 4
2.2. Second-order cone programming .. 4
2.3. Euclidean Jordan algebras ... 4
2.4. Interior-point methods ... 6
2.5. Quantum linear algebra ... 7

3. A Quantum Interior-point Method ... 9
3.1. Central path .. 9
3.2. Single iteration correctness ... 10
3.3. Rescaling .. 10
3.4. Maintaining strict feasibility ... 11
3.5. Maintaining path closeness ... 12
3.6. Final complexity and feasibility ... 12

4. Quantum Support-Vector Machines ... 14
4.1. Reduction ... 15
4.2. Least-squares SVM .. 15
4.3. Experimental results ... 16

Bibliography ... 18

1. Introduction
Support vector machines (SVMs) are widely used supervised machine learning models for
classifying data. The goal of SVMs is to find a hyperplane separating different classes of data
points as uniformly as possible. Using the kernel trick they can efficiently be extended to non-
linear classification, by mapping the data to a higher-dimensional space.

Linear SVMs can be implemented classically using second-order cone programming (SOCP)
and then be solved using interior-point methods (IPMs). IPMs are closely related to Newton’s
method for finding the roots of functions. An optimal solution is approximated through iter-
ative improvements by solving a linear system in each step.

This method is not commonly used for SVMs in practice. The alternative, also classical, se-
quential minimal optimization (SMO) algorithm allows for kernel tricks and has a better run-
time than classical SOCP methods for SVMs. SMO typically achieves a worst-case runtime of
𝒪(𝑛3), while SOCP methods have a runtime of 𝒪(𝑛𝜔+0.5) with a matrix multiplication expo-
nent 𝜔 of at least 2.37 and up to 3, depending on the implementation.

Kerenidis et al. [1] have proposed an IPM for SOCP making use of quantum computing to
solve linear systems more efficiently and applied this technique to solving SVMs. Their method
promises a polynomial speedup over both SMO and classic SOCP methods. They verified this
experimentally through numerical simulations. Random SVM instances were solved using all
three methods and an estimated complexity of 𝒪(𝑛2.59) for their own quantum SOCP method,
𝒪(𝑛3.11) using SMO, and 𝒪(𝑛3.31) with a classical SOCP method were measured.

We will present their techniques and results. Additionally we suggest an extension of their
method to the alternative SVM formulation of least-squares SVMs. Kerenidis et al. consider
soft-margin SVMs, where the hyperplane is only affected by samples lying in a margin around
it. Least-squares SVMs consider the squared error over all samples.

3

2. Preliminaries
2.1. Notation

By (𝒙1; …; 𝒙𝑛) ≔ [
𝒙1

⋮
𝒙𝑛

] we denote the column-wise conjunction of vectors.

[𝑚] ≔ {1, …, 𝑚} ⊆ ℕ. If not specified ‖𝒙‖ refers to the Euclidean norm.

2.2. Second-order cone programming
The goal in SOCP is to minimize a linear function inside the intersection of second-order
Lorentz cones. We follow the formulation of a SOCP with its dual from [2]. A Lorentz cone
ℒ𝑘 ⊆ ℝ𝑘 is defined as ℒ𝑘 = {𝒙 = (𝑥0; 𝒙̃) ∈ ℝ𝑘 |‖𝒙̃‖ ≤ 𝑥0}. For its interior int ℒ the inequal-
ity ‖𝒙̃‖ < 𝑥0 has to hold. Over the product of Lorentz cones ℒ = ℒ𝑛1 × ⋯ × ℒ𝑛𝑟 we define
a SOCP problem (1) and its dual (2) given 𝒄𝑖 ∈ ℝ𝑛𝑖 , 𝒃 ∈ ℝ𝑚, 𝐴𝑖 ∈ ℝ𝑚×𝑛𝑖 as

min 𝒄𝖳
1 𝒙1 + ⋯ + 𝒄𝖳

𝑟 𝒙𝑟

s.t. 𝐴1𝒙1 + ⋯ + 𝐴𝑟𝒙𝑟 = 𝒃
𝒙𝑖 ∈ ℒ𝑖,

(1)
max 𝒃𝖳𝒚

s.t. 𝐴𝖳
𝑖 𝒚 + 𝒔𝑖 = 𝒄𝑖

𝒔𝑖 ∈ ℒ𝑖, 𝒚 ∈ ℝ𝑚.
(2)

𝑛 ≔ ∑𝑟
𝑖=1 𝑛𝑖 is the SOCP problem’s size and 𝑟 its rank. For each indexed variable when leav-

ing away the index we refer to a conjunction like 𝒙 = (𝒙1; …; 𝒙𝑟). (𝒙, 𝒚, 𝒔) is feasible if it
fulfills both (1) and (2), and strictly feasible if also 𝒙, 𝒔 ∈ int ℒ. For a feasible solution (𝒙, 𝒚, 𝒔)
the duality gap is defined as 𝜇 ≔ 1

𝑟𝒙𝖳𝒔. The Weak Duality Lemma [3] states that 𝜇 ≥ 0. With

𝒄𝖳𝒙 − 𝒃𝖳𝒚 = (𝒚𝖳𝐴 + 𝒔𝖳)𝒙 − 𝒙𝖳𝐴𝖳𝒚 = 𝒙𝖳𝒔 = 𝑟𝜇

and the optimization terms of (1) and (2) it then follows that the goal is to minimize 𝜇. The
Strong Duality Theorem [3] states that an optimal solution with 𝜇 = 0 exists.

2.3. Euclidean Jordan algebras
In this section a mathematical structure over Lorentz cones is introduced, whose properties
are essential for proving the correctness of the main algorithm presented in Section 3. A Jor-
dan algebra is a commutative algebra that satisfies the Jordan identity

(𝑥 ∘ 𝑦) ∘ (𝑥 ∘ 𝑥) = 𝑥 ∘ (𝑦 ∘ (𝑥 ∘ 𝑥)).

It is not necessarily associative. Over the Lorenz cone ℒ𝑛 a Jordan algebra is defined by the
Jordan product

𝒙, 𝒚 ∈ ℝ𝑛 : 𝒙 ∘ 𝒚 ≔ [
𝒙𝖳𝒚

𝑥0 ̃𝒚 + 𝑦0𝒙̃
] with identity 𝒆 = [1

0𝑛−1].

With the arrow-shaped matrix representation Arw(𝒙) ≔ [
𝑥0

𝒙̃
𝒙̃𝖳

𝑥0𝐼𝑛−1
] we get

𝒙 ∘ 𝒚 = Arw(𝒙)𝒚 = Arw(𝒙) Arw(𝒚)𝒆.

We can induce an analogue to the matrix decomposition:

4

𝜆1(𝒙) ≔ 𝑥0 + ‖𝒙̃‖, 𝒄1(𝒙) ≔
1
2
[

1
𝒙̃

‖𝒙̃‖
],

𝜆2(𝒙) ≔ 𝑥0 − ‖𝒙̃‖, 𝒄1(𝒙) ≔
1
2
[

1
−𝒙̃
‖𝒙̃‖

].

If 𝒙 is clear from context, we do not have to write it out, e.g. 𝜆1 = 𝜆1(𝒙). From the decompo-
sition we get 𝒙 = 𝜆1𝒄1 + 𝜆2𝒄2 and call the set of eigenvalues {𝒄1, 𝒄2} 𝒙’s Jordan frame.

Proposition 1 (Properties of Jordan frames). For 𝒙 ∈ ℝ𝑛 with Jordan frame {𝒄1, 𝒄2}, the
following holds:

1. 𝒄1 ∘ 𝒄2 = 0

2. 𝒄1 ∘ 𝒄1 = 𝒄1 and 𝒄2 ∘ 𝒄2 = 𝒄2

3. 𝒄1, 𝒄2 are of the form (1
2 ; ± ̃𝒄) with ‖ ̃𝒄‖ = 1

2

Similarly to a matrix being (semi)definite iff all eigenvalues are positive (nonnegative), we get:

Proposition 2. For 𝒙 ∈ ℝ𝑛 with eigenvalues 𝜆1, 𝜆2, the following holds:

1. 𝒙 ∈ ℒ𝑛 iff 𝜆1 ≥ 0 and 𝜆2 ≥ 0.

2. 𝒙 ∈ int ℒ𝑛 iff 𝜆1 > 0 and 𝜆2 > 0.

Using the decomposition we define power 𝒙𝑝 for 𝑝 ∈ ℝ as 𝒙𝑝 ≔ 𝜆𝑝
1𝒄1 + 𝜆𝑝

2𝒄2 and as such in
particular

𝒙−1 =
1
𝜆1

𝒄1 +
1
𝜆2

𝒄2, if 𝜆1, 𝜆2 ≠ 0,

𝒙1
2 = √𝜆1𝒄1 + √𝜆2𝒄2, if 𝒙 ∈ ℒ𝑛.

We further define the Frobenius¹ and spectral norm

¹Frobenius norm of a matrix ‖𝐴‖𝐹 ≔ √∑𝑚
𝑖=1 ∑𝑛

𝑗=1|𝑎𝑖𝑗|2

‖𝒙‖𝐹 ≔ √𝜆2
1 + 𝜆2

2 =
√

2‖𝒙‖,

‖𝒙‖2 ≔ max{|𝜆1|, |𝜆2|} = |𝑥0| + ‖𝒙̃‖.

Now we want to find an equivalent operation to 𝑞𝑋 : 𝑌 ↦ 𝑋𝑌 𝑋. For this we define the qua-
dratic representation 𝑄𝒙:

𝑄𝒙 ≔ 2 Arw2(𝒙) − Arw(𝒙2) = [
‖𝒙‖2

2𝑥0𝒙̃
2𝑥0𝒙̃𝖳

𝜆1𝜆2𝐼𝑛 + 2𝒙̃𝒙̃𝖳
]

With this we define the shorthand 𝑇𝒙 ≔ 𝑄𝒙1/2 .

Finally, we extend the definitions to block vectors of rank 𝑟 over the product of Lorentz cones:

1. 𝒙 ∘ 𝒚 ≔ (𝒙1 ∘ 𝒚1; …; 𝒙𝑟 ∘ 𝒚𝑟)

PRELIMINARIES 5

2. Arw(𝒙) ≔ Arw(𝒙1) ⊕ ⋯ ⊕ Arw(𝒙𝑟), 𝑄𝒙 ≔ 𝑄𝒙1
⊕ ⋯ ⊕ 𝑄𝒙𝑟

3. The 2𝑟 eigenvectors of 𝒙 are the eigenvectors of its blocks extended with 0s in the other
blocks.

4. 𝒆 ≔ (𝒆1; …; 𝒆𝑟)

5. ‖𝒙‖2
𝐹 ≔ ∑𝑟

𝑖=1‖𝒙𝑖‖2
𝐹 , ‖𝒙‖2 ≔ max𝑖‖𝒙𝑖‖2

6. 𝒙𝑝 ≔ (𝒙𝑝
1; …; 𝒙𝑝

𝑟)

From these definitions we get some useful properties.

Claim 1 (Algebraic properties). Let 𝒙, 𝒚 ∈ ℒ, then

1. ‖𝒙 + 𝒚‖2 ≤ ‖𝒙‖2 + ‖𝒚‖2.

2. ‖𝒙‖2 ≤ ‖𝒙‖𝐹 .

3. 𝜆min(𝒙 + 𝒚) ≥ 𝜆min(𝒙) − ‖𝒚‖2.

Proposition 3 (Properties of 𝑄𝒙 [3]). For 𝑥 ∈ int ℒ the following holds:

1. 𝑄𝒙𝒆 = 𝒙2, and thus 𝑇𝒙𝒆 = 𝒙.

2. 𝑄𝒙−1 = 𝑄−1
𝒙 , and more generally 𝑄𝒙𝑝 = 𝑄𝑝

𝒙 for all 𝑝 ∈ ℝ.

3. ‖𝑄𝒙‖2 = ‖𝒙‖2
2, and thus ‖𝑇𝒙‖2 = ‖𝒙‖2.²

4. 𝑄𝒙 preserves ℒ, i.e. 𝑄𝒙(ℒ) = ℒ and 𝑄𝒙(int ℒ) = int ℒ.

²Matrix spectral norm ‖𝐴‖2 = max𝜆 √𝜆(𝐴∗𝐴), where 𝜆 is an eigenvalue of 𝐴⋆𝐴.

2.4. Interior-point methods
The IPM solves a SOCP by computing a sequence of feasible solutions with decreasing duality
gap using Newton’s method. First we reformulate the original problem to the Karush-Kuhn-
Tucker optimality condition

𝐴𝒙 = 𝒃, 𝐴𝖳𝒚 + 𝒔 = 𝒄
𝒙 ∘ 𝒔 = 𝜈𝒆, 𝒙 ∈ ℒ, 𝒔 ∈ ℒ.

(3)

Because 𝒙 ∘ 𝒔 = 𝜈𝒆, 𝜈 > 0 is equal to the duality gap 𝜇. Decreasing 𝜈 by a factor 𝜎 < 1 each
iteration results in a sequence of feasible solutions (𝒙, 𝒚, 𝒔) of (3), converging towards an
optimal solution of the original SOCP problem, as 𝜇 = 𝜈 → 0. The trace of this sequence is
called central path.

To obtain the next iteration we solve the Newton system

⎣
⎢
⎡ 𝐴

0
Arw(𝒔)

0
𝐴𝖳

0

0
𝐼

Arw(𝒙)⎦
⎥
⎤

⎣
⎢
⎡Δ𝒙

Δ𝒚
Δ𝒔⎦

⎥
⎤ =

⎣
⎢
⎡ 𝒃 − 𝐴𝒙

𝒄 − 𝒔 − 𝐴𝖳𝒚
𝜎𝜇𝒆 − 𝒙 ∘ 𝒔 ⎦

⎥
⎤

(4)

and set 𝒙next ≔ 𝒙 + Δ𝒙, 𝒚next ≔ 𝒚 + Δ𝒚 and 𝒔next ≔ 𝒔 + Δ𝒔, giving us a new solution of
(3) with 𝜈 = 𝜎𝜇.

6 PRELIMINARIES

2.5. Quantum linear algebra
To solve linear systems like the Newton system (4) on quantum computers we need data struc-
tures for storing and loading vectors and matrices in quantum systems, as well as methods to
perform basic linear operations on those.

For a unit vector 𝒙 ∈ ℝ2𝑘 with ‖𝒙‖ = 1, |𝒙⟩ refers to the quantum state |𝒙⟩ ≔ ∑2𝑘−1
𝑖=0 𝑥𝑖|𝑖⟩ ∈

ℂ2𝑘 . This gives a representation of a 𝑛-dimensional unit vector in a ⌈log 𝑛⌉-qubit system. To
enable matrix operations on such quantum states we need a way to represent a matrix as a
unitary transformation 𝑈 : ℂ2𝑘 → ℂ2𝑘 . For this we use the block encoding framework as de-
scribed in [4].

Definition. For a symmetric matrix 𝐴 ∈ ℝ𝑛×𝑛, the ℓ-qubit unitary matrix 𝑈 ∈ ℂ2ℓ×2ℓ
 is

𝐴’s (𝜁, ℓ)-block encoding if 𝑈 = [𝐴/𝜁
⋅

⋅
⋅]. The block encoding of a non-symmetric matrix 𝐵 ∈

ℝ𝑛×𝑚 is a block encoding of its symmetric representation sym(𝐵) ≔ [0
𝐵𝖳

𝐵
0
].

What is contained in the dotted part of the unitary is left up to the implementation. Now
that we have encodings for vectors and matrices we need a data structure implementing them
efficiently on quantum computers, giving us access to matrix rows or columns in poly-loga-
rithmic time. [4] provides one such structure built on top of the QRAM model. In QRAM an
array [𝒃1, …, 𝒃𝑚] of 𝑤-bit strings can be accessed in poly-logarithmic time with the unitary
transform

|𝑖⟩|0⟩⊗𝑤 ↦ |𝑖⟩|𝒃𝑖⟩, for 𝑖 ∈ [𝑚].

Theorem 1 (Block encodings using QRAM [4, 5]). There exists a QRAM data structure storing
𝑚 vectors 𝒗𝑖 ∈ ℝ𝑛 and matrices 𝐴 ∈ ℝ𝑛×𝑛, access to which enables the following:

1. Implement the unitary transform |𝑖⟩|0⟩ ↦ |𝑖⟩|𝒗𝑖⟩ for 𝑖 ∈ [𝑚] in ̃𝒪(1).

2. For 𝜁(𝐴) ≔ ‖𝐴‖−1
2 min(‖𝐴‖𝐹 , 𝑠1(𝐴)) with 𝑠1 = max𝑖 ∑𝑗|𝐴𝑖,𝑗|, a unitary (𝜁(𝐴), 2 log 𝑛)-

block encoding of 𝐴 giving access to rows or columns of 𝐴 in time 𝒪(log 𝑛) can be constructed
in a single pass over 𝐴. Each entry can be updated in 𝒪(log2 𝑛) time.

To solve linear systems with block encodings we make use of:

Theorem 2 (Quantum linear algebra with block encodings [6, 7]). Given a (𝜁, 𝒪(log 𝑛))-block
encoding of a matrix 𝐴 ∈ ℝ𝑛×𝑛 with non-zero eigenvalues in the interval [−1, − 1

𝜅] ∪ [1
𝜅 , 1]

and 𝜀 > 0, let 𝑡𝐴 be the time it takes to access a row or column of 𝐴 and let 𝑡𝒃 be the time it takes
to prepare state |𝒃⟩ for a vector 𝒃 ∈ ℝ𝑛.

A state 𝜀-close to |𝐴−1𝒃⟩ can be generated in time 𝒪((𝑡𝐴𝜅𝜁 + 𝑡𝒃) polylog(𝜅𝜁/𝜀)).

Theorem 2 directly enables us to solve linear equations of the form 𝐴𝒙 = 𝒃 by generating
|𝐴−1𝒃⟩. To make practical use of this solution we require a way to efficiently extract classi-
cal data from this quantum state. In quantum state tomography multiple incomplete measure-
ments on a quantum state are performed, which are then used to estimate the quantum state.
By increasing the number of measurements higher accuracy can be gained. The tomography
algorithm presented in [8] takes advantage of the fact that we are capable of preparing the
quantum state arbitrarily often using a unitary transform.

PRELIMINARIES 7

Theorem 3 (Efficient vector state tomography [8]). Given a procedure constructing |𝒙⟩ in time
𝑡𝒙 and precision 𝛿 > 0, one can construct an estimate 𝒙 ∈ ℝ𝑛 with ‖𝒙‖ = 1 such that ‖𝒙 −
𝒙‖ ≤

√
7𝛿 with probability at least 1 − 1/𝑛0.83 in time 𝒪(𝑡𝒙

𝑛 log 𝑛
𝛿2).

This can be repeated ̃𝒪(1) times to get success probability at least 1 − 1/poly 𝑛. Putting all of
this together, we can solve 𝐴𝒙 = 𝒃 up to error 𝛿 in time ̃𝒪(𝑛 ⋅ 𝜅𝜁

𝛿2), assuming that 𝐴 and 𝒃 are
already loaded in QRAM. For well conditioned matrices, especially those with large dimension
𝑛, and limited precision requirements, this can lead to a significant speedup over the classical
𝑂(𝑛𝜔). Here 𝜔 is the matrix multiplication exponent with a current theoretical lower bound
of roughly 2.37, and a practical value in most implementations closer to 3.

8 PRELIMINARIES

3. A Quantum Interior-point Method
[1] proposes a quantum IPM based on the classical IPM from Section 2.4, incorporating tech-
niques from quantum linear algebra to solve the Newton system, the most computationally
expensive part of IPMs. The main steps of this algorithm are as follows:

Given matrix 𝐴 and vectors 𝒃, 𝒄 in QRAM, parameter 𝜀.

1. Compute feasible (𝒙, 𝒚, 𝒔, 𝜇0) and store it in QRAM.

2. For 𝒪(
√

𝑟 log(𝜇0/𝜀)) iterations:

a. Compute 𝜎𝜇𝒆 − 𝒙 ∘ 𝒔 classically and store it in QRAM.
b. Prepare Newton system (3).
c. Get |(Δ𝒙; Δ𝒚; Δ𝒔)⟩ from solving the Newton system and get classical approx-

imation (Δ𝒙; Δ𝒚; Δ𝒔) using tomography.
d. Update 𝒙 ← 𝒙 + Δ𝒙, 𝒔 ← 𝒔 + Δ𝒔 and store it in QRAM.
e. Update 𝜇 ← 1

𝑟𝒙𝖳𝒔.

3. Output (𝒙, 𝒚, 𝒔).
Algorithm 1: Quantum IPM for SOCP

The first step in showing that this algorithm solves an SOCP problem is to show that feasibility
is preserved in each iteration and the solution stays close to the central path. Then asymptotic
bounds for the required runtime to achieve a desired level of precision will be given.

From here on out most complete proofs will be omitted. Instead proof ideas will be provided.
For further technical detail we refer to the original paper [1].

3.1. Central path
To start we take a closer look at the central path, tracing the exact iterative solutions of (3).
As Algorithm 1 works with approximate solutions, we formalize how far we stray from the
central path. Define the distance to the central path as 𝑑(𝒙, 𝒔, 𝜈) ≔ ‖𝑇𝒙𝒔 − 𝜈𝒆‖𝐹 and with
this the 𝜂-neighborhood

𝒩𝜂(𝜈) ≔ {(𝒙, 𝒚, 𝒔) |(𝒙, 𝒚, 𝒔) strictly feasible and 𝑑(𝒙, 𝒔, 𝜈) ≤ 𝜂𝜈}.

Lemma 1 (Properties of the central path, [1] Lemma 1). For 𝜈 > 0 and 𝒙, 𝒔 ∈ int ℒ the fol-
lowing properties hold:

1. For all 𝜈 > 0 the duality gap and distance from the central path are related by

|𝒙𝖳𝒔 − 𝑟𝜈| ≤ √𝑟
2

⋅ 𝑑(𝒙, 𝒔, 𝜈).

2. The distance from the central path is symmetric in its arguments, i.e. 𝑑(𝒙, 𝒔, 𝜈) = 𝑑(𝒔, 𝒙, 𝜈).

3. Let 𝜇 = 1
𝑟𝒙𝖳𝒔, then

𝑑(𝒙, 𝒔, 𝜇) ≤ 𝜂𝜇 ⇒ (1 + 𝜂)‖𝒔−1‖2 ≥ ‖𝜇−1𝒙‖2.

9

We show the first part by rewriting the scaled duality gap to 𝒙𝖳𝒔 = 1
2 ∑2𝑟

𝑖=1 𝜆𝑖, where {𝜆𝑖}
2𝑟
𝑖=1

are the eigenvalues of 𝑇𝒙𝒔. Because we take the absolute value, a lower and an upper bound
are needed. With the Cauchy-Schwarz inequality and definition of 𝑑(𝒙, 𝒔, 𝜈) the bounds
1
2 ∑2𝑟

𝑖=1 𝜆𝑖 − 𝑟𝜈 ≤ √𝑟
2 ⋅ 𝑑(𝒙, 𝒔, 𝜈) and 𝑟𝜈 − 1

2 ∑2𝑟
𝑖=1 𝜆𝑖 ≤ √𝑟

2 ⋅ 𝑑(𝒙, 𝒔, 𝜈) are obtained.

The second part follows from Theorem 10.2 from [3]. For part 3 it is first shown using algebraic
properties that 𝜂𝜇 ≥ ‖𝑇𝒔𝒙 − 𝜇𝒆‖𝐹 ≥ 1

‖𝒔−1‖2
⋅ 𝜇 ⋅ ‖𝜇−1𝒙 − 𝒔−1‖2 and thus

𝜂‖𝒔−1‖2 ≥ ‖𝜇−1𝒙 − 𝒙−1‖2 ≥ ‖𝜇−1𝒙‖2 − ‖𝒔−1‖2,

from which the desired inequality directly follows.

3.2. Single iteration correctness
Central to showing the correctness of Algorithm 1 is that feasibility and a close distance to the
central path are maintained in each iterative step. This is expressed by the following theorem:

Theorem 4 (Per-iteration correctness, [1] Theorem 4). For positive constants 𝜒 = 𝜂 = 0.01
and 𝜉 = 0.001 and a feasible solution (𝒙, 𝒚, 𝒔) of (1) with 𝜇 = 1

𝑟𝒙𝖳𝒔 and 𝑑(𝒙, 𝒔, 𝜇) ≤ 𝜂𝜇, the
Newton system (4) with 𝜎 = 1 − 𝜒/

√
𝑟 has a unique solution (Δ𝒙, Δ𝒚, Δ𝒔). For approximate

solutions Δ𝒙, Δ𝒔 with

‖Δ𝒙 − Δ𝒙‖𝐹 ≤
𝜉

‖𝑇𝒙−𝟏‖
, ‖Δ𝒔 − Δ𝒔‖𝐹 ≤

𝜉
2‖𝑇𝒔−𝟏‖

and 𝒙𝑛𝑒𝑥𝑡 ≔ 𝒙 + Δ𝒙, 𝒔𝑛𝑒𝑥𝑡 ≔ 𝒔 + Δ𝒔, the following holds:

1. The updated solution is strictly feasible, i.e. 𝒙𝑛𝑒𝑥𝑡, 𝒔𝑛𝑒𝑥𝑡 ∈ int ℒ.

2. The updated solution satisfies 𝑑(𝒙𝑛𝑒𝑥𝑡, 𝒔𝑛𝑒𝑥𝑡, 𝜇) ≤ 𝜂𝜇 and 1𝑟𝒙𝖳
𝑛𝑒𝑥𝑡𝒔𝑛𝑒𝑥𝑡 = 𝜇 for 𝜇 = 𝜎𝜇, 𝜎 =

1 − 𝛼√
𝑟 and a constant 0 < 𝛼 ≤ 𝜒.

To show Theorem 4 we will first rescale the vectors 𝒙 and 𝒔, so that they share the same Jordan
frame. With these rescaled vectors we can then show that strict feasibility is maintained each
iteration, showing part 1 of the theorem, and then in a second step that path closeness is kept,
showing part 2.

3.3. Rescaling
We rescale 𝒙 and 𝒔 to 𝒙′ and 𝒔′ to obtain two desired properties. They share the same Jordan
frame and the duality gap is 1. From then on it suffices to work only with the rescaled version,
as their feasibility and closeness to the path implies the same properties for the original enti-
ties. We scale by 𝑇𝒙 to bring them into the same Jordan frame and by 𝜇−1 to normalize the
duality gap:

𝒙′ ≔ 𝑇 −1
𝒙 𝒙 = 𝒆 and 𝒔′ ≔ 𝜇−1𝑇𝒙𝒔

This also results in

Δ𝒙′ = 𝑇 −1
𝒙 Δ𝒙 and Δ𝒙′ = 𝜇−1𝑇𝒙Δ𝒔.

10 A QUANTUM INTERIOR-POINT METHOD

The conditional bounds from Theorem 4 on Δ𝒙 and Δ𝒔 imply simplified bounds on their
scaled counterparts:

‖Δ𝒙′ − Δ𝒙′‖𝐹 = ‖𝑇𝒙−1Δ𝒙 − 𝑇𝒙−1Δ𝒙‖𝐹

≤ ‖𝑇𝒙−1‖ ‖ Δ𝒙 − Δ𝒙‖𝐹 ≤ 𝜉

‖Δ𝒔′ − Δ𝒔′‖𝐹 = 𝜇−1 ‖𝑇𝒙Δ𝒔 − 𝑇𝒙Δ𝒔‖𝐹

≤ 𝜇−1 ‖𝑇𝒙‖ ‖ Δ𝒔 − Δ𝒔‖𝐹

= 𝜇−1 ‖𝒙‖2 ‖ Δ𝒔 − Δ𝒔‖𝐹

≤ (1 + 𝜂) ‖𝒔−1‖2 ‖ Δ𝒔 − Δ𝒔‖𝐹 by Lemma 1.3

≤ 2 ‖𝑇𝒔−1‖ ‖ Δ𝒔 − Δ𝒔‖𝐹 ≤ 𝜉

Claim 2 ([1] Claim 2). The following holds for the scaled vectors 𝒙′ and 𝒔′:

1. The scaled duality gap is 1𝑟𝒙′𝖳𝒔′ = 1.

2. 𝑑(𝒙, 𝒔, 𝜇) ≤ 𝜂𝜇 is equivalent to ‖𝒔′ − 𝒆‖ ≤ 𝜂.

3. 𝑑(𝒙, 𝒔, 𝜇𝜎) = 𝜇 ⋅ 𝑑(𝒙′, 𝒔′, 𝜎) for all 𝜎 > 0.

These properties directly follow from the rescaling. Assuming 𝒙′
next, 𝒔′

next ∈ int ℒ we also get
𝒙next = 𝑇 −1

𝒙 𝒙′
next ∈ int ℒ and 𝒔next = 𝜇𝑇𝒙𝒔′

next ∈ int ℒ. This in combination with Claim 2
implies that it is sufficient to show the properties of Theorem 4 in the scaled case.

3.4. Maintaining strict feasibility
Here we show the first part of Theorem 4.

Lemma 2 ([9] Lemma 6). For distance to the central path 𝜂 and duality gap 𝜇, we have the
following bounds for the scaled direction:

‖Δ𝒙′‖𝐹 ≤
Θ
√

2
, ‖Δ𝒔′‖𝐹 ≤ Θ

√
2,

𝑤ℎ𝑒𝑟𝑒 Θ =
2√𝜂2

2 + (1 − 𝜎)2𝑟
1 − 3𝜂

.

These bounds on the increments enable us to show that strict feasibility is preserved.

Lemma 3 ([1] Lemma 3). For 𝜂 = 𝜒 = 0.01 and 𝜉 = 0.001, 𝒙′
𝑛𝑒𝑥𝑡 and 𝒔′

𝑛𝑒𝑥𝑡 are strictly feasi-
ble, i.e. 𝒙′

𝑛𝑒𝑥𝑡, 𝒔′
𝑛𝑒𝑥𝑡 ∈ int ℒ.

Proof. By Lemma 2 and Claim 1, 𝜆min(𝒙′
next) ≥ 𝜆min(𝒙′) − ‖Δ𝒙′‖𝐹 ≥ 1 − Θ√

2
− 𝜉. With

𝑑(𝒙, 𝒔, 𝜇) ≤ 𝜂𝜇, it follows that 𝑑(𝒙′, 𝒔′, 1) ≤ 𝜂, and

𝜂2 ≥ ‖𝒔′ − 𝒆‖2
𝐹 = ∑

2𝑟

𝑖=1
(𝜆𝑖(𝒔′) − 1)2.

This grants us 𝜆𝑖(𝒔′) ∈ [1 − 𝜂, 1 + 𝜂] ∀𝑖 ∈ [2𝑟]. Again with Lemma 2 and Claim 1 we get

A QUANTUM INTERIOR-POINT METHOD 11

𝜆min(𝒔′
next) ≥ 𝜆min(𝒔′ + Δ𝒔′) − ‖Δ𝒔′ − Δ𝒔′‖𝐹

≥ 𝜆min(𝒔′) − ‖Δ𝒔′‖𝐹 − ‖Δ𝒔′ − Δ𝒔′‖𝐹

≥ 1 − 𝜂 − Θ
√

2 − 𝜉.

With 𝜂 = 𝜒 = 0.01 and 𝜉 = 0.001 this results in 𝜆min(𝒙′
next) ≥ 0.8, 𝜆min(𝒙′

next) ≥ 0.8. ◻

3.5. Maintaining path closeness
The second part of Theorem 4 is shown by the next two lemmas.

Lemma 4 ([1] Lemma 4). Let 𝜂 = 𝜒 = 0.01, 𝜉 = 0.001, and 𝛼 any 0 < 𝛼 ≤ 𝜒, then for 𝜎 =
1 − 𝛼/

√
𝑟 the distance to the central path is maintained with 𝑑(𝒙′

𝑛𝑒𝑥𝑡, 𝒔′
𝑛𝑒𝑥𝑡, 𝜎) < 𝜂𝜎.

To show Lemma 4 the first step is to bound

𝑑(𝒙′
next, 𝒔′

next, 𝜎) ≤ ‖𝑇𝒙′
next

‖
𝐹

⋅ ‖𝒔′
next − 𝜎 ⋅ 𝒙′−1

next‖𝐹
.

The left part becomes ‖𝑇𝒙′
next

‖𝐹 ≤ 1 + Θ√
2

+ 𝜉 and for the right part we define 𝒛 ≔ 𝒔′
next −

𝜎 ⋅ 𝒙′−1
next, which then is split into three parts that are bounded individually:

𝒛 = 𝒔′ + Δ𝒔′ − 𝜎𝒆 + Δ𝒙′
⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒛1

+ (𝜎 − 1)Δ𝒙′
⏟⏟⏟⏟⏟

𝒛2

+ 𝜎(𝒆 − Δ𝒙′ − (𝒆 + Δ𝒙′)
−1

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒛3

1. ‖𝒛1‖𝐹 ≤ 2𝜉 + 𝜒√
𝑟 + 3√

2
𝜂Θ

2. ‖𝒛2‖𝐹 ≤ 𝜒√
𝑟(Θ√

2
+ 𝜉)

3. ‖𝒛3‖𝐹 ≤ 𝜎(Θ2

2−
√

2Θ
+ 𝜉 + 𝜉

((1−Θ/
√

2−𝜉))
2)

Plugging in 𝜒 = 𝜂 = 0.01, 𝜉 = 0.001, this then gives 𝑑(𝒙′
next, 𝒔′

next, 𝜎) ≤ 0.005𝜎 ≤ 𝜂𝜎.

Lemma 5 ([1] Lemma 5). For the same constants and 𝛼 = 0.005 the updated solution satisfies
1
𝑟𝒙′𝖳

𝑛𝑒𝑥𝑡𝒔′
𝑛𝑒𝑥𝑡 = 1 − 𝛼√

𝑟 .

With the fact that 𝒙𝖳
next𝒔next = 𝜇

𝑟 𝒙′𝖳
next𝒔′

next and Lemma 1, a bound for 1
𝑟𝒙′𝖳

next𝒔′
next is found,

into which 𝑑(𝒙′
next, 𝒔′

next, 𝜎) ≤ 0.005𝜎 from the proof of Lemma 4 is inserted, to get the final
bound.

3.6. Final complexity and feasibility
The desired precision for solving the Newton system is dependent on the norms

‖𝑇𝒙−1‖ = ‖𝒙−1‖ = 𝜆min(𝒙)−1 and

‖𝑇𝒔−1‖ = ‖𝒔−1‖ = 𝜆min(𝒔)−1.

To satisfy Theorem 4 in the 𝑖-th iteration the tomography precision has to be at least

𝛿𝑡 ≔
𝜉
4

min{𝜆min(𝒙𝑖), 𝜆min(𝒔𝑖)}

12 A QUANTUM INTERIOR-POINT METHOD

and the overall precision is chosen to be 𝛿 ≔ min𝑖 𝛿𝑖. We do the same for the parameters of
the block encoding of the Newton matrix 𝜅 ≔ max𝑖 𝜅𝑖 and 𝜁 ≔ max𝑖 𝜁𝑖.

Theorem 5 ([1] Theorem 5). For an SOCP as stated in (1) with 𝐴 ∈ ℝ𝑚×𝑛 for 𝑚 ≤ 𝑛, and ℒ
of rank 𝑟, Algorithm 1 achieves duality gap 𝜀 in time

𝒪(
√

𝑟 log(
𝜇0
𝜀

) ⋅
𝑛𝜅𝜁
𝛿2 log(

𝜅𝜁
𝛿

)).

This complexity follows as a product of the number of iterations and the complexity of the
quantum tomography.

Throughout the execution, due to the imprecision of tomography, the linear constraints 𝐴𝒙 =
𝒃 and 𝐴𝖳𝒚 + 𝒔 = 𝒄 are never satisfied exactly. It is now left to show that this error is only
dependent on the tomography precision and not accumulated, so that the final solution has
an acceptable level of accuracy.

Theorem 6 ([1] Theorem 6). For an SOCP as stated in Theorem 5, after 𝑇 iterations the (linear)
infeasibility of the final iterate (𝒙𝑇 , 𝒚𝑇 , 𝒔𝑇) is bounded as

‖𝐴𝒙𝑇 − 𝒃‖ ≤ 𝛿‖𝐴‖,

‖𝐴𝖳𝒚𝑇 + 𝒔𝑇 − 𝒄‖ ≤ 𝛿(‖𝐴‖ + 1).

Proof. The Newton system in the 𝑇 -th iteration has constraint 𝐴Δ𝒙𝑇 = 𝒃 − 𝐴𝒙𝑇−1. This
can recursively be expanded to

𝐴Δ𝒙𝑇 = 𝒃 − 𝐴𝑥0 − ∑
𝑇−1

𝑡=1
Δ𝒙𝑡 = − ∑

𝑇−1

𝑡=1
Δ𝒙𝑡. (5)

From the iterative definition of solutions it follows that

𝐴𝒙𝑇 − 𝒃 = 𝐴 ∑
𝑇

𝑡=1
Δ𝒙𝑡 =

(5)
𝐴(Δ𝒙𝑇 − Δ𝒙𝑇).

Analogously we get

𝐴𝖳𝒚𝑇 − 𝒃 = 𝐴(Δ𝒚𝑇 − Δ𝒚𝑇) + (Δ𝒔𝑇 − Δ𝒔𝑇).

Bounding the norms on these equations directly gives the desired inequalities. ◻

A QUANTUM INTERIOR-POINT METHOD 13

4. Quantum Support-Vector Machines
SVMs are supervised learning models for data classification.
Given a set of training vectors 𝑋 = {𝒙𝑖 ∈ ℝ𝑛 | 𝑖 ∈ [𝑚]} and
their labels 𝑦𝑖 ∈ {−1, 1}, the goal is to find the hyperplane
separating vectors with differing labels. For linear SVMs this
hyperplane is defined by the set of 𝒙 ∈ ℝ𝑛 with

𝒘𝖳𝒙 − 𝑏 = 0,

where 𝒘 is the normal vector of the hyperplane and 𝑏
‖𝒘‖ its

distance from the origin.
In their most basic formulation, that of hard-margin SVMs, it is required that the data is lin-
early separable with such a hyperplane. The goal is then to find a hyperplane keeping as much
distance from all samples and thus separating the two classes as clearly as possible. The area
around this hyperplane, bounded by two parallel hyperplanes of equal distance, is called the
margin. For all samples 𝒙 with label 1 directly on the boundary, this gives us the equation
𝒘𝖳𝒙 − 𝑏 = 1 and analogously 𝒘𝖳𝒙 − 𝑏 = −1 for those labeled −1. Combining these equa-
tions and extending them to non-boundary samples we get the criterion

𝑦𝑖(𝒘𝖳𝒙𝑖 − 𝑏) ≥ 1.

As the distance between the boundaries is 2
‖𝒘‖ , to get a wide margin we must minimize ‖𝒘‖

and hence arrive at the following optimization problem:

min
𝒘,𝑏

‖𝒘‖2

s.t. 𝑦𝑖(𝒘𝖳𝒙𝑖 + 𝑏) ≥ 1, ∀𝑖 ∈ [𝑚]

To allow for cases where the data is not linearly separable this is extended to soft-margin SVMs,
where we consider the hinge loss. For misclassified samples 𝒙𝑖 it is 𝜉𝑖 = 1 − 𝑦𝑖(𝒘𝖳𝒙𝑖 − 𝑏),
proportional to the distance from the proper boundary of the sample. For correctly classified
samples 𝒙𝑖 it is 𝜉𝑖 = 0. The goal is then not only to minimize ‖𝒘‖, but also the cumulative
hinge loss. To give control over how much to value a wide margin over correctly classifying
more samples, the hyperparameter 𝐶 > 0 is introduced. We get the final optimization problem

min
𝒘,𝑏,𝝃

‖𝒘‖2 + 𝐶 ∑
𝑚

𝑖=1
𝜉𝑖

s.t. 𝑦𝑖(𝒘𝖳𝒙𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0 ∀𝑖 ∈ [𝑚].
(6)

Soft-margin can also be useful for linearly separable data, as it allows for the misclassification
of outliers, that might otherwise prevent more meaningful hyperplanes.

While the results of [1] only apply to linear soft-margin SVMs, we also mention that SVMs
can be extended to non-linear classifiers with the so called kernel trick. The idea is that we
map the samples and 𝒘 from our vector space 𝒳 to another, often higher-dimensional space
𝒱, with a function 𝜑 : 𝒳 → 𝒱. To keep performance reasonable by avoiding to explicitly map

14

all vectors to a higher-dimensional space, all dot products are replaced by a kernel function 𝑘
satisfying 𝑘(𝒙, 𝒚) = ⟨𝜑(𝒙), 𝜑(𝒚)⟩𝒱.

4.1. Reduction
To solve SVMs with the quantum IPM from Section 3 we now have to reformulate the opti-
mization problem (6) as an SOCP problem. The minimization term lets us use the primal form
(1). Implementing 𝐶 ∑𝑚

𝑖=1 𝜉𝑖 = [𝐶𝑚]𝝃 is straightforward. 𝐶𝑚 is 𝐶 repeated 𝑚 times. To min-
imize ‖𝒘‖2 we introduce the auxiliary variable 𝑡, which we minimize instead, and use it to
create an upper bound for ‖𝒘‖2. Let 𝒕 ≔ (𝑡 + 1; 𝑡; 𝒘), then 𝒕 ∈ ℒ𝑛+2 grants us

𝒕 ∈ ℒ𝑛+2 ⇔ (𝑡 + 1)2 ≥ 𝑡2 + ‖𝒘‖2 ⇔ 2𝑡 + 1 ≥ ‖𝒘‖2.

Thus, by minimizing 𝑡 we also minimize ‖𝒘‖2. In practice this might affect the choice of 𝐶
as 𝑡 ≠ ‖𝒘‖2. We put these parts together and rewrite the conditions from (6) to get the final
reformulation

min
𝒕,𝑏,𝝃

[0 1 0𝑛 0 𝐶𝑚]
⎣
⎢
⎡

𝒕
𝑏
𝝃⎦
⎥
⎤

s.t.

⎣
⎢
⎢
⎢
⎡0

⋮
0
1

0
⋮
0

−1

𝑋𝖳

0𝑛

1
⋮
1
0

diag(𝒚)

0𝑚 ⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎡

𝒕
𝑏
𝝃⎦
⎥
⎤ = [

𝒚
1]

𝒕 ∈ ℒ𝑛+2, 𝑏 ∈ ℒ1, 𝜉𝑖 ∈ ℒ1 ∀𝑖 ∈ [𝑚].

(7)

Here 𝑋 = [𝒙1 … 𝒙𝑚] ∈ ℝ𝑛×𝑚 is the matrix containing the samples as columns. Note that
𝑎 ∈ ℒ1 is equivalent to 𝑎 ≥ 0. This enforces 𝜉𝑖 ≥ 0 for 𝑖 ∈ [𝑚]. At the same time it also limits
us to solutions 𝑏 > 0. This poses no problem, as for any solution with 𝑏 < 0 and weights 𝒘
an equivalent one with bias −𝑏 > 0 and weights −𝒘 can be found. For 𝑖 ∈ [𝑚] the 𝑖-fd row
of the linear system is

𝒙𝖳
𝑖 𝒘 + 𝑏 + 𝑦𝑖𝜉𝑖 = 𝑦𝑖 ⇔ 𝑦𝑖(𝒘𝖳𝒙𝑖 + 𝑏) = 1 − 𝜉𝑖.

The final row makes sure that 𝒕 is of the desired shape.

4.2. Least-squares SVM
In the original paper [1] it is mentioned that a similar formulation can also be made for least-
squares SVMs (LS-SVMs). We will now suggest such a reduction ourselves.

LS-SVMs as introduced in [10] are an alternative version of SVMs. They consider not the sum
of the hinge loss, but instead the least-squares error:

min
𝒘,𝑏,𝝃

‖𝒘‖2 + 𝐶‖𝝃‖2

s.t. 𝑦𝑖(𝒘𝖳𝒙𝑖 + 𝑏) = 1 − 𝜉𝑖 ∀𝑖 ∈ [𝑚]

This results in all samples, except for those directly on their classes boundary, having a pos-
itive loss, i.e. samples can also be penalized for being “too correct”. As such the notion of a

QUANTUM SUPPORT-VECTOR MACHINES 15

margin, in which there ideally would be no samples, is lost. This effects which solutions can
be found using LS-SVMs. In turn the solution is more robust to outliers and can be optimized
more efficiently.

To turn this into a SOCP problem, we modify problem (7) by applying the same trick used to
implement the minimization of ‖𝒘‖2. We introduce the auxiliary vector 𝒖 = (𝑢 + 1; 𝑢; 𝝃).

min
𝒕,𝑏,𝝃

[0 1 0𝑛 0 0 𝐶 0𝑚][
𝒕
𝑏
𝒖

]

s.t.

⎣
⎢
⎢
⎢
⎢
⎡0

⋮
0
1
0

0
⋮
0

−1
0

𝑋𝖳

0𝑛

0𝑛

1
⋮
1
0
0

0
⋮
0
0
1

0
⋮
0
0

−1

diag(𝒚)

0𝑚

0𝑚 ⎦
⎥
⎥
⎥
⎥
⎤

[
𝒕
𝑏
𝒖

] =
⎣
⎢⎡

𝒚
1
1⎦
⎥⎤

𝒕 ∈ ℒ𝑛+2, 𝑏 ∈ ℒ1, 𝒖 ∈ ℒ𝑚+2

As suggested in [1], this results in 𝒪(1) conic constraints and as such the IPM converges in
̃𝒪(1) iterations, showing the runtime advantages LS-SVMs can have over traditional SVMs.

4.3. Experimental results

Figure 1: Observed complexity, power law fit,
and 95% confidence interval, [1]

Figure 2: SVM accuracy difference, [1]

In [1] a simulated experiment was performed to get insights into the realistic complexity and
accuracy of solving SVM problems using Algorithm 1. The IPM is implemented classically
and noise is added to each solution of the Newton system. The amount of noise was chosen
according to the accuracy bounds from Theorem 4.

For each SVM instance the dimension 𝑛 ∈ [22, 29], number of samples 𝑚 = 2𝑛, and probabil-
ity of a sample being misclassified by an optimal solution 𝑝 ∈ {0, 0.1, …, 0.9, 1} were chose
uniformly. The target duality gap was 𝜀 = 0.1, and 𝐶 was chosen to be 1. A test set containing
⌊𝑚/3⌋ samples from the same distribution was used to evaluate the resulting SVM classifier.

In total 16.000 instances were generated and each was solved using the simulated QSVM solver
and the classical ECOS SOCP solver [11]. The complexity of both approaches was measured,

16 QUANTUM SUPPORT-VECTOR MACHINES

the results of which for Algorithm 1 are shown in Figure 1. Algorithm 1 achieved an estimated
complexity of 𝒪(𝑛2.591), a significant speedup over ECOS’ 𝒪(𝑛3.314). This polynomial speedup
is preserved for classical SOCP solvers in general, as they have complexity 𝒪(𝑛𝜔+0.5), depen-
dent on the matrix multiplication index 𝜔 with a current lower bound of roughly 2.37.

Another 1.000 instances were solved using Algorithm 1 and LIBSVM [12] with a linear kernel.
LIBSVM uses the widespread sequential minimal optimization algorithm, that, unlike SOCP
methods, supports the kernel trick. It achieves a measured complexity of 𝒪(𝑛3.112) and there-
fore is also beat by the theoretical results of the QSVM.

The results of the QSVM were compared with those of ECOS and LIBSVM, and the accuracy
difference was accumulated and shown in Figure 2. It can be seen that the QSVM tends to
slightly outperform ECOS and on the test set is close to LIBSVM. The biggest difference is a
worse performance on the training set compared to LIBSVM.

QUANTUM SUPPORT-VECTOR MACHINES 17

Bibliography
[1] I. Kerenidis, A. Prakash, and D. Szilágyi, “Quantum algorithms for Second-Order Cone Programming

and Support Vector Machines,” Quantum, vol. 5, p. 427–428, 2021, doi: 10.22331/Q-2021-04-08-427 .

[2] Y. Ye, M. J. Todd, and S. Mizuno, “An O(√nL)-Iteration Homogeneous and Self-Dual Linear
Programming Algorithm,” Math. Oper. Res., vol. 19, no. 1, pp. 53–67, 1994, doi: 10.1287/MOOR.19.1.53 .

[3] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math. Program., vol. 95, no. 1, pp. 3–
51, 2003, doi: 10.1007/S10107-002-0339-5 .

[4] I. Chakrabarty, S. Khan, and V. Singh, “Dynamic Grover search: applications in recommendation
systems and optimization problems,” Quantum Inf. Process., vol. 16, no. 6, p. 153–154, 2017, doi: 10.1007/
S11128-017-1600-4 .

[5] I. Kerenidis and A. Prakash, “Quantum gradient descent for linear systems and least squares,” Physical
Review A, vol. 101, no. 2, Feb. 2020, doi: 10.1103/physreva.101.022316 .

[6] S. Chakraborty, A. Gilyén, and S. Jeffery, “The Power of Block-Encoded Matrix Powers: Improved
Regression Techniques via Faster Hamiltonian Simulation,” in ICALP, in LIPIcs, vol. 132. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 1–14. doi: 10.4230/LIPICS.ICALP.2019.33 .

[7] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe, “Quantum singular value transformation and beyond:
exponential improvements for quantum matrix arithmetics,” in STOC, ACM, 2019, pp. 193–204. doi:
10.1145/3313276.3316366 .

[8] I. Kerenidis and A. Prakash, “A Quantum Interior Point Method for LPs and SDPs,” CoRR, 2018,
[Online]. Available: http://arxiv.org/abs/1808.09266

[9] R. D. C. Monteiro and T. Tsuchiya, “Polynomial convergence of primal-dual algorithms for the second-
order cone program based on the MZ-family of directions,” Math. Program., vol. 88, no. 1, pp. 61–83,
2000, doi: 10.1007/PL00011378 .

[10] J. A. K. Suykens, L. Lukas, and J. Vandewalle, “Sparse least squares Support Vector Machine classifiers,”
in ESANN, 2000, pp. 37–42. [Online]. Available: https://www.esann.org/sites/default/files/proceedings/
legacy/es2000-352.pdf

[11] A. Domahidi, E. Chu, and S. P. Boyd, “ECOS: An SOCP solver for embedded systems,” in ECC, IEEE,
2013, pp. 3071–3076. doi: 10.23919/ECC.2013.6669541 .

[12] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans. Intell. Syst.
Technol., vol. 2, no. 3, pp. 1–27, 2011, doi: 10.1145/1961189.1961199 .

18

https://doi.org/10.22331/Q-2021-04-08-427
https://doi.org/10.1287/MOOR.19.1.53
https://doi.org/10.1007/S10107-002-0339-5
https://doi.org/10.1007/S11128-017-1600-4
https://doi.org/10.1007/S11128-017-1600-4
https://doi.org/10.1103/physreva.101.022316
https://doi.org/10.4230/LIPICS.ICALP.2019.33
https://doi.org/10.1145/3313276.3316366
http://arxiv.org/abs/1808.09266
https://doi.org/10.1007/PL00011378
https://www.esann.org/sites/default/files/proceedings/legacy/es2000-352.pdf
https://www.esann.org/sites/default/files/proceedings/legacy/es2000-352.pdf
https://doi.org/10.23919/ECC.2013.6669541
https://doi.org/10.1145/1961189.1961199

	Introduction
	Preliminaries
	Notation
	Second-order cone programming
	Euclidean Jordan algebras
	Interior-point methods
	Quantum linear algebra

	A Quantum Interior-point Method
	Central path
	Single iteration correctness
	Rescaling
	Maintaining strict feasibility
	Maintaining path closeness
	Final complexity and feasibility

	Quantum Support-Vector Machines
	Reduction
	Least-squares SVM
	Experimental results

	Bibliography

