
Quantum Walk Algorithm for Element
Distinctness

Jan Luca de Riese

July 2024

Abstract

Ambainis algorithm for element distinctness from his 2007 paper
is an influential result many other papers have built upon. Although
it comes with significant drawbacks regarding space, it serves as an
excellent example to analyze as a quantum algorithm. It runs at
the proven lower bound of O(N2/3) and uses clever applications of
quantum random graph walks to achieve this speedup.

Contents

1 Introduction 2
1.1 Element distinctness . 3
1.2 Runtime in a quantum world 3

2 Quantum Background 4

3 The Algorithm 7

4 Analysis 10

5 Conclusion 12

6 Appendix 14

1

1 Introduction

Quantum computers are computers that operate on a fundamentally differ-
ent paradigm. In contrast to the binary system classical computers use,
in which the machines work on zeroes and ones, a quantum computer can
take on any number of states in between. Among others, this means that
such a computer can have bits which are in a one-state and a zero-state si-
multaneously, a so-called superposition. By leveraging these superpositions,
quantum computers are able to perform calculations on many possible inputs
simultaneously, delivering significant speedup. Additionally, one may entan-
gle states, making actions on certain bits influence other bits without direct
intervention. However, things are not that simple. Despite these seemingly
magical advantages, such computers also bring serious disadvantages. Any
state that the quantum computer is in, which is not simply a classical state,
cannot simply be looked at and measured. A state is non-classical if it con-
tains some form of e.g. superposition or entanglement. Such actions collapse
these states and instead of gaining answers about the calculation result, one
gets a random result. This, by itself, would mean quantum computers do
not actually speed up calculations at all. By employing clever tricks and
letting the quantum bits interact and interfere with each other, one can ma-
nipulate the probabilities for which result state the collapse leads to, making
significant speedups possible.

The following report is about one such algorithm. This algorithm, pub-
lished in a 2007 paper [3] by Ambainis entitled ”Quantum walk algorithm
for element distinctness”, solves the problem of element distinctness with sig-
nificant speedup compared to classical approaches. It uses quantum search
on graphs as well as quantum walks as its main components in solving el-
ement distinctness. The paper was hugely influential, being cited well over
a thousand times. It led to multiple other authors building on top of his
algorithm’s ideas.

The runtime of Ambainis’ algorithm was proven as a lower bound in a paper
by Aaronson and Shi[2].

2

x1 x2 x3 x4 x5 . . . xN
8 5 42 2 42 . . . 7

Figure 1: Example for an element distinctness problem.

1.1 Element distinctness

Element distinctness is a basic problem in computer science that involves
determining whether a list has any duplicate elements. It is relevant in
different applications of database management. For example, a bank could
need to check if all transactions in a certain account are unique in order to
determine fraud. The basic formulation of the problem involves a list of N
items no greater than a number M , with each item bearing the index i and
being labeled xi. For an example, see fig. 1. Such a list of N items is not
distinct if there are two equal items with different indices.

A formal definition is given by Definition 1.
Definition 1 (Element Distinctness). Given numbers x1, . . . , xN ∈ [M], are
there two indices i, j ∈ [N] with i ̸= j such that xi = xj.

This problem can also be generalized to more than two items. k-element-
distinctness is the problem where we decide if a given list (defined similarly
to the previous problem) contains k equal items. In the element distinctness
problem, this k was set to 2. As this version is closely related to element
distinctness, it can be solved by cleverly choosing a subset of the given list
and running an algorithm designed for element distinctness on it. A formal
definiton for k-element distinctness is as follows:
Definition 2 (k-Element Distinctness). Given numbers x1, . . . , xN ∈ [M],
are there k > 2 distinct indices i1, . . . , ik ∈ [N] such that xi = · · · = xk.

1.2 Runtime in a quantum world

When talking about runtime in a quantum context, one model that is often
used is that of the quantum query model. In this model, runtime is measured
by asking how often we query an oracle, meaning how often we need to ask
for new variables pertinent to our problem. In the element distinctness case,
these would be the actual entries of the list. This quantum query model is
used because it allows us to draw sensible conclusions as to the difference that
this algorithm has when compared to a classical one. We are then better able

3

s0 s1 s2

0.5

0.5

0.3

0.3

0.4

0.5

0.5

Figure 2: A small example for a markov chain process

to estimate the so called quantum advantage. We define our general problem
of element distinctness as a function f(x1, . . . , xN), which is 1 if and only if
there are two equal items. To evaluate this function, we need to query the
oracle and gain our xi which we feed into f . Except for these queries, no
other unitary operations incur a cost as far as runtime goes.

Without this background, the first approach to element distinctness that
comes to mind is simply pairwise comparison (in O(n2)). With a bit more
thought, it quickly becomes clear that sorting first and then comparing neigh-
bors leads to a good speedup already. When measured in the quantum query
model, like Ambaini uses, we need to shift our mode of thinking. Sorting and
then comparing, uses Ω(N) queries. This is because we need to query every
single element in the list in order to sort it. Ambainis’ algorithm, however,
runs in O(Nk/(k+1)), which is significantly faster. Note that the k here is the
k in Element k-Distinctness. For the standard element distinctness problem
with k = 2, this leads to a runtime of N2/(2+1) = N2/3.

2 Quantum Background

In this next section we will introduce the concepts necessary to understand
Ambainis’ algorithm. Since the algorithms works with quantum walks as
well as graph walks, these two concepts will be explained. First, a general
explanation of random walks, and then the quantum setting is given.

A random walk is a Markov chain process. A Markov chain is a probabilistic
process in which each steps probabilities only depend on the current state,
not on the previous steps taken. In Figure 2 one can see an example of a
Markov chain. A very simple example of a random walk is called walk on
the line. During a walk on the line, we walk over the number line. We start
off at number 0 and walk left with probability 1/2 and right with probability

4

0

-1

-2

-3 -1

0

-1 1

1

0

-1 1

2

1 3

Figure 3: How our state develops during a walk on the line.

1/2. We keep track with a state n, adding or subtracting 1 to and from the
state respectively (depending on the outcome of the coinflip). In each step
these probabilities stay equal. In Figure 3 we can see the first 3 steps of
such a walk. Intuitively it is clear that we most likely stay in, or close to
the center. In order to drift to the left or the right swiftly, we would have
to choose either of them repeatedly, which is only one out of all the possible
paths available and therefore not as probable.

Next, we build the analogous case for a quantum context. The state n which
keeps track of our walk’s position now becomes a quantum state |n⟩. In
a similar transition to the classical case, we can initialy map this state to
|n⟩ → a |n− 1⟩+b |n⟩+c |n+ 1⟩. (This example includes the option to move
in neither direction but is otherwise identical.) If we take a more detailed
look at this, we quickly notice that this is not a valid unitary. It only works
if one of our factors (a, b, c) is 1 and the other two are 0.

To solve the problem with our unitary, we add an additional state. We call
this the coinflip state C. Its current position is simply appended to our state,
making the new statespace |n, 0⟩ and |n, 1⟩ with n ∈ Z. Now the one step
that previously was our transition gets split in two: First we flip the coin and
then we shift that result onto n. The coin flip changes the value in the second
position of our state with probability 1/2, and leaves it the same with equal
probability. In more formal terms, it maps C |n, 0⟩ = 1√

2
|n, 0⟩ + 1√

2
|n, 1⟩

and C |n, 1⟩ = 1√
2
|n, 0⟩ − 1√

2
|n, 1⟩. After having flipped the coin, we just

shift its value onto n: S |n, 0⟩ = |n− 1, 0⟩ and S |n, 1⟩ = |n+ 1, 0⟩. Now we
have all the components for our random walk. A step of walk looks like this:
SC. Regarding the probabilites for the flip, an astute observer might have
noticed that the probabilities in C are the entries of the Hadamard-matrix.
This would therefore be an intuitive choice for the coin flip matrix. Upon

5

Figure 4: A graph from [1] comparing quantum (r.) and classical (l.) walks.
Plotted by repeatedly running a walk for N steps, then graphing the achieved
distances.

further inspection however, it is revealed that the different sign on the last
factor makes the transition asymmetric. In longer runs, the random walks
tend to the left side of the number line [4]. A more balanced matrix than
Hadamard would for example be P .

P =

(
1√
2

i√
2

i√
2

1√
2

)
If we are operating on more general graphs, this matrix can be replaced with
Grover’s diffusion operator ([7]).

If we plot the progression on a number line after X steps, we get a distribu-
tion that shows how the classical walk progresses. In the quantum context,
it works similarly. Since we cannot measure after every step, we have to
run the experiment to completion for every result that we want to measure.
Surprisingly, the Distribution of quantum results does not take similar shape
to the classical one. Whereas the classical one is concentrated around the
middle, the quantum distribution shows two visible ’horns’ to the left and
right, while sporting a depression in the middle. This means, that the quan-
tum walk spreads far quicker than a classical walk would. In fact, it spreads
quadratically quicker.

6

[2, 3]

[2, 5]

[2, 6]

[2, 3, 6]

[2, 5, 6]

N2/3 N2/3 + 1

Figure 5: The graph that Ambainis constructs to reduce element distinctness to

3 The Algorithm

In the next section, we will use the aforementioned concepts to construct a
graph and describe how we work on it. We will construct the examples for
k = 2, however they analogously work for other k. Because the algorithm
is a random walk algorithm, it takes graphs as input. An example for this
graph is shown in figure 5. We first construct the graph that our problem
reduces to. This is the graph in figure 5. It is bipartite, and every vertex is
labelled. We label all the vertices of the graph with subsets of the list. We
keep track of which elements are in these sub-lists, by writing the indices of
the relevant items into the label. Each subset on the left side of our graph
contains N2/3 indices, and each subset on the right side N2/3 + 1. Since this
number will come up more often for the rest of this report, let r be equal
to N2/3. Our graph vertices are connected by edges if and only if the labels
differ in exactly one element, i.e. if the larger label only adds one element
and changes nothing else. Finally, some of our vertices are marked. A vertex
is marked if the indices contained in its label include the indices of a valid
solution for our element distinctness problem. Our challenge now consists of
finding a marked vertex in as little steps as possible.

This graph has
(
N
r

)
+

(
N
r+1

)
vertices, as the binomial factor can be used to

compute the sizes of subsets. A formal definition is given by Definition 3.

7

1. We start with the superposition

1√(
N
r

)
(N − r)

∑
|S|=r,y /∈S

|S⟩ |y⟩ .

2. For all i ∈ S for our starting set, query the corresponding xi. Our state
is now:

1√(
N
r

)
(N − r)

∑
|S|=r,y /∈S

|S⟩ |y⟩
⊗
i∈S

|xi⟩

3. O((N/r)k/2) = O(N1/3) times:
a) Apply the unitary to phase flip all |S⟩ |y⟩ |x⟩ → − |S⟩ |y⟩ |x⟩ iff S

contains i, j where xi = xj.
b) Perform O(N1/3) steps of quantum walk.

4. Measure the final state, answer if S contains a doubling of elements or
not

Figure 6: The Element Distinctness main algo [3].

Definition 3 (Distinctness Graph). Given x1, . . . , xN , we construct graph
G = (E, V) with V = {vS | S ⊆ [N], |S| = r} ∪ {vT | T ⊆ [N], |T | = r + 1}
and E = {{vS, vT} | T = S ∪ {i} for some i ∈ [N]}. A vertex VS is marked
if S contains i, j, i ̸= j, with xi = xj.

In the following part, we will define and illustrate the algorithm. It consists
of a main loop, and a quantum walk subroutine. We will give definitions for
each and then explain them in more detail after.

Similar to basically all quantum algorithms out there, we start off in a su-
perposition. In our case, this is the superposition of all possible state combi-
nations of S and y where S is of size r and y a possible element to add to S.
Now in step 2, we query all the xi corresponding to the is in our starting set
S. This makes our superposition contain that information too. Step 3 is the
main loop that we go through as often as needed for our algorithm to find
a correct solution. Since the algorithms runs off of amplitude amplification,
this number of loops is analytically calculated later in the paper. During a
single loop, we apply a phase flip to all correct parts of our vector, and then

8

1. Apply the transformation that maps |y⟩ to

|S⟩
((

−1 + 2
N−r

)
|y⟩+ 2

N−r

∑
y′ /∈S,y′ ̸=y |y′⟩

)
.

2. Next we map from S to T, adding y to S and extending x by a zero at
location y.

3. We query xy and insert it into x at y

4. Map |y⟩ to
((

−1 + 2
r+1

)
|y⟩+ 2

r+1

∑
y′∈S,y′ ̸=y |y′⟩

)
.

5. We query for xy using the x corresponding to the new y. This also
erases it.

6. We then map back from T to S by removing the y component from x
and y from S.

Figure 7: The Quantum Walk Subroutine [3].

perform O(N1/3) steps of quantum walk. In a final step, we then measure
the result and answer whether our problem was distinct or not.

This works similar to Grover’s algorithm. Step 3a flips everything that is a
good solution and leaves everything orthogonal to it alone. Step 3b we will
now explain in more detail.

The quantum walk subroutine in Figure 7 consists of 6 steps. In steps 1-3 we
move from the left side of the graph to the right, while in steps 4-6 we move
back from the right to the left. The transformations in steps 1 and 3 act as
diffusion operators similar to Grover’s algorithm. In the context of random
walks, they can be conceptualized as coinflips. We therefore start off with
a coinflip in step 1. Afterwards, we need to extend our set S by one entry,
since we are moving to the vertex group that has set sizes of r+ 1. We then
query the corresponding xi belonging to the i we added. In the second half
of the quantum walk, we coinflip once again, and query for xy using x. This
erases x. We then finish up by mapping back from T to S, removing the
y-part from x and y itself from S.

In this way we walk over the graph, deciding first what ’direction’ to take,
and then walking, oscillating back between vertices of label-size r and r+ 1.
This walk subroutine itself does not actually take a look at correct solutions.
Correct solutions are achieved by amplifying the corresponding amplitude in
the previous step. Since the only direction we can walk is along one of the
vertices, y represents the index i that we plan on adding or removing from

9

our set S. This corresponds to the set T = S ∪ {i} that we are moving in
the direction of.

4 Analysis

For our second to last section, we describe some of the theoretical results
that Ambainis achieves, and the lemmas that help him get there.

We define the state space that the algorithm resides in by defining two Hilbert
spaces, H and H′. These correspond to the vertices with size r and r +
1 respectively. For H this means our basis states are |S, x, y⟩, with S ⊆
[N], |S| = r, x ∈ [M]r, y ∈ [N] \ S. This goes to say that for each subset
which could be a label, we define a corresponding basis state. The x contains
all the xi which correspond to the i ∈ S. Finally the state contains the y,
representing the state we next want to add to our set S.

For H′ we have basis states |S, x, y⟩ with S ⊆ [N], |S| = r+1, x ∈ [M]r+1, y ∈
S. Therefore, same definiton asH, but with a set S that is one element larger
(r+1), as well as y now being the element that is going to be removed from
S next, instead of added to.

We will now present the central theorem that Ambainis proves in order to
determine the runtime of his algorithm.

Theorem 1 (Theorem 5 [3]). Let x1, . . . , xN be such that there exists one set
I containing i1, . . . , ik such that xi1 = · · · = xik . With a constant probability,
measuring after the algorithm gives S such that I ⊆ S, meaning we found
one such I.

We start off by dividing our state space in a more sensible manner. Instead of
introducing a basis state for all the possible sensible configurations our space
can take on, we reduce all states that share a similar behavior under the
algorithm. Meaning say they share an equal amplitude when transformed.
For k-element distinctness, there exist 2k + 1 such types of states. For the
classical problem of element distinctness, this means k = 2 and therefore
2k + 1 = 5 different types. These types classify our new basis states. Any
state |S, y⟩, |S| = r, y /∈ S, |S, y⟩ ∈ H is in class (j, 0) if y /∈ I and in class
(j, 1) if y ∈ I. j is the number of i ∈ (S ∩ I). In simpler words, the second
(binary) index siginifies whether the current y we are looking at is part of the

10

correct solution, while the first number j denotes how many correct indices
we have identified. Identified just means how many of them are in our set S.

We now only analyze the 5-dimensional subspace spanned by the superposi-
tion of their respective basis states (for k = 2 these are
|ψ(0,0)⟩ , |ψ(0,1)⟩ , |ψ(1,0)⟩ , |ψ(1,1)⟩ , |ψ(2,0)⟩ and we call the space H̃.) There is no

|ψ(2,1)⟩, since y /∈ S =⇒ y /∈ I. (Analogously for H̃′.)

Similarly to how we illustrated in our algorithm description for our quantum
walk subroutine, where we mapped from S to T , here we map from H̃ to H̃′

and back

We take a look at |ψstart⟩ and |ψgood⟩, our starting state and the goal state.
One can imagine these similarly to how Grover’s algorithm is often illus-
trated, with |ψgood⟩ being in the place of the y-axis and |ψstart⟩ somewhere
almost orthogonal to that. Our algorithm, starting at |ψstart⟩ now aims to
move close enough to |ψgood⟩ such that measuring collapses to the correct
answer with reasonable probability.

For the next step we define two unitary matrices. U1 flips the phase on any
part of our system that is |ψgood⟩ (3a in the algorithm). While U2 describes
N1/3 steps of the quantum walk (3b in the algorithm). This reminds us of the
flip and diffuse technique utilized in Grover. Here, U1 is the flipping operator,
while U2 diffuses. The flip is simple enough, and the diffusion corresponds to
the quantum walk, because in walking across the graph in superposition, we
”diffuse” our state across possible solutions. Then, describing our algorithm
as a transformation (U2U1)

t|ψstart⟩, there exists a t such that the inner prod-
uct of the result of (U2U1)

t|ψstart⟩ with |ψgood⟩ is constant. Calculating the t
required for constant success leaves us with t1 = O((N/r)k/2)

For this analysis so far, we have taken a look at the query oracle model. In a
different model called the comparison query model, we measure how often we
compare two values. Converting it to the comparison query model leaves us
with O(Nk/(k+1) logN) queries. If we implement the algorithm and analyze
its entire runtime, not just the queries, we need O(Nk/(k+1) logc(N + M))
steps. This also poses one other central criticism of the paper. Ambainis
states, that to implement this algorithm the standard circuit model is aug-
mented with gates for access to a quantum RAM. This quantum RAM is
central in order to uphold the algorithm’s performance. Without this caveat,
we need Ω(r) instead of O(logN) time for a simple data structure operation.

11

This was also criticized by Grover himself [6], as it substantially slows down
the algorithm. Without this supposed access to a QRAM, Dalzell et al. [5]
for example outright say that the algorithm is not practical at all.

5 Conclusion

In our final section, we talk about some future developments, some future
work that Ambainis’ talked about, and summarize the report.

After this paper was published, Magniez et al. used this algorithm to give an
O(n1.3) query algorithm for finding triangles in a graph. Ambainis himself
used the ideas for a faster 2-dimensional grid search algorithm. Another
author, Szegedy, found that for a class of Markov chains, quantum walks are
quadratically faster than classical.

Ambainis states that the algorithm uses space to store O(N2/3) items. He
postulates about time-space tradeoffs and where there might be gained speed-
ups by using more space. Moreover, the k-distinctness algorithm does not yet
have proven optimality. For element distinctness the lower bound is proven.
Therefore the worst case for k-distinctness would be repeating a normal dis-
tinctness k − 1 times. This would give you a runtime of Ω(N2/3). Finally,
quantum walks on other graphs can be explored with similar frameworks.

In conclusion, this algorithm uses the structure inherent to the problem to
optimize search in this case. It is a structured search algorithm. We get a
general query count of O(Nk/(k+1)). Interestingly, by changing the way we
mark the goal vertices, it is possible to solve all kinds of 2-subset problems,
and not just Element Distinctness.

References

[1] May 9, 2006. url: https://qipconference.org/2004/presentations/
ambainis.pdf (visited on 07/16/2024).

[2] Scott Aaronson and Yaoyun Shi. “Quantum lower bounds for the col-
lision and the element distinctness problems”. In: Journal of the ACM
(JACM) 51.4 (2004), pp. 595–605.

[3] Andris Ambainis. “Quantum walk algorithm for element distinctness”.
In: SIAM Journal on Computing 37.1 (2007), pp. 210–239.

12

https://qipconference.org/2004/presentations/ambainis.pdf
https://qipconference.org/2004/presentations/ambainis.pdf

[4] Andris Ambainis. “Quantum walks and their algorithmic applications”.
In: International Journal of Quantum Information 1.04 (2003), pp. 507–
518.

[5] Alexander M Dalzell et al. “Quantum algorithms: A survey of applica-
tions and end-to-end complexities”. In: arXiv preprint arXiv:2310.03011
(2023).

[6] Lov Grover and Terry Rudolph. “How significant are the known colli-
sion and element distinctness quantum algorithms?” In: arXiv preprint
quant-ph/0309123 (2003).

[7] Lov K. Grover. “A fast quantum mechanical algorithm for database
search”. In: Proceedings of the Twenty-Eighth Annual ACM Sympo-
sium on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania,
USA: Association for Computing Machinery, 1996, pp. 212–219. isbn:
0897917855. doi: 10.1145/237814.237866. url: https://doi.org/
10.1145/237814.237866.

13

https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866

6 Appendix

1. We define T1 = [N] and j = 1

2. Repeat while |Tj| > max(r,
√
N):

(a) Run algorithm 2 on xi, i ∈ Tj. Measure the final state, and check
if it includes a k-collision

(b) Choose qi as an even power of a prime for which |Tj| ≤ qj ≤
(1 + 1

2k2
)|Tj| holds. Select a random permutation πj on [qj]

(c) Define Tj+1 =
{
π−1
1 π−1

2 . . . π−1
j (i), i ∈

[
⌈ 2k
2k+1

qj⌉
]}

(d) And j = j+1

3. If |Tj| ≤ r, query all xi, i ∈ Tj classically. Check if there is a k-collision.

4. If |Tj| ≤
√
N , run Grover search on the set of at most Nk/2 k-tuples of

pairwise distinct i, searching for a tuple of k i’s s.t. the corresponding
x are equal. Answer if you find the tuple.

Figure 8: Algorithm for k-Element Distinctness. [3]

14

	Introduction
	Element distinctness
	Runtime in a quantum world

	Quantum Background
	The Algorithm
	Analysis
	Conclusion
	Appendix

