
Solving linear differential equations
quantumly

Quantum vs classical methods by example of Poisson’s equation

Jonas Broeckmann

9th August 2024

Abstract

Differential equations are used to model a wide range of physical phenomena
in areas such as computational fluid dynamics, quantum mechanics and
electromagnetism, but also in finance, chemistry and many other fields. Many
of these applications already have specifically designed quantum algorithms,
some of which show speedups over classical algorithms. This paper will focus
on QLSS based approaches for solving linear differential equations by example
of Poisson’s equation and discuss how the quantum algorithms compare to
classical alternatives. An overview of possible approaches and their benefits
and costs will be given, as well as a summary of the current state of research
in the field.

1 Introduction
Many mathematical descriptions of real-world phenomena are formulated as differen-
tial equations. They are equations that describe functions based on their derivatives
and are used to model a wide range of physical phenomena in areas such as computa-
tional fluid dynamics, quantum mechanics and electromagnetism, but also in finance,
chemistry, biology and many other fields [8]. Examples include the heat equation,
wave equations and Schrödinger’s equation in physics, Black-Scholes equation in
finance, and the reaction-diffusion equation in chemistry.

As they are such a widely used tool, it is of interest to investigate how quantum
algorithms can be used to solve differential equations and whether they can provide
speedups over classical methods. We will start by a brief look at linear differential
equations and specifically Poisson’s equation, as well as their discretization into
a system of linear equations, before introducing the quantum linear system solver
(QLSS) and comparing it to classical approaches.

1

2 Linear differential equations
Differential equations can take many forms, some of which require more advanced
methods to solve than others. In this paper, we will focus on linear differential
equations, which are a class of differential equations that can be written in the form of
a linear combination of derivatives. They are of particular interest because they have
well-understood properties and can be solved using a variety of methods. Quantum
computing also fits them well, as quantum mechanics is inherently linear [20]. Linear
differential equations can further be divided into linear ordinary differential equations
(ODEs) and linear partial differential equations (PDEs). Linear PDEs are equations
of the form:

Lu = f(x1, ..., xd) (1)

Here L is a linear differential operator, which is a linear combination of partial
derivatives with d variables. The function u is the function of interest and f is a
given function. Linear ordinary differential equations (ODEs) may be considered a
special case of linear PDEs where d = 1 and can be written as

L = a0(x) + a1(x) ∂

∂x
+ a2(x) ∂2

∂x2 + ... + an(x) ∂n

∂xn
(2)

where a0, ..., an are functions of x.
In many cases, x represents time, such as in the case of the simple harmonic

oscillator. PDEs with more than one independent variable are often used to model
phenomena that depend on multiple spatial dimensions, and possibly time as well.
Popular examples of linear PDEs are the Schrödinger equation in quantum mechanics
and Poisson’s equation, which will be discussed later in more detail. Most of the
problems that follow from nature are confined to at most three spatial dimensions and
one time dimension, but cases with more dimensions also exist, such as in quantum
chemistry or quantum many-body problems, in which the dimensionality depends on
the number of quantum particles [8, 16].

Analytical solutions to differential equations often provide the most insight into
the behavior of the system that is under consideration, because they obtain the
exact solutions. While analytical solvers exist for many simple types of differential
equations, others are too complex or do not have analytical solutions at all [10, 18]. In
these cases, numerical methods are used to approximate the solution computationally.
There exist a wide variety of numerical approaches such as algorithmic differentiation
[21], spectral methods, the family of Runge-Kutta methods and, related to those,
also finite difference methods, which will be the main focus of this paper.

2.1 Poisson’s equation
The example used throughout this paper will be Poisson’s equation, as it is a simple
second-order linear PDE that is used in many areas of physics and engineering to
model concepts such as the electric potential or the gravitational field [12]. It was

2

first formulated by the French mathematician Siméon Denis Poisson in the early
19th century and is given by the linear differential operator

L = ∆ = ∇2 = ∂2

∂x2 + ∂2

∂y2 (3)

for two-dimensional cartesian coordinates (x, y), but can be generalized to any number
of dimensions. The example of Poisson’s equation in a quantum algorithmic setting
will follow closely1 to the work of Cao et al. 2013 in the case for d = 2 dimensions:

∆u(x, y) = f(x, y), x, y ∈ (0, 1) (4)

Here f is some given function, often specifying the geometry of the modeled system.
We limited this example to the unit square with edges fixed at 0 resulting in the
boundary conditions u(x0, y) = u(x, y0) = 0 with x0, y0 ∈ {0, 1}.

The runtimes of classical solvers are bounded from below by at least Ω
(
Md

)
where

M is a measure for the numerical precision, which will be discussed later. As the
time complexity scales exponentially with the number of dimensions d, in literature
this is often referenced as the "curse of dimensionality" [6]. It is therefore of interest
to investigate whether quantum algorithms can provide speedups in this regard.

3 Discretization
In order to solve linear differential equations numerically, they are typically discretized.
This means that the continuous domain of the differential equation is divided into
a finite number of (grid) points, and the differential equation is approximated by
a system of algebraic equations that can be solved using numerical methods. The
most common discretization methods are finite difference methods and finite element
methods.

Finite difference methods approximate the derivatives in the differential equation
by differences of function values at neighboring grid points. That is, by choosing a
grid spacing h, the derivative of a function u(x) can be approximated by

∂u

∂x
(x) = u(x + h) − u(x)

h
+ ε (5)

at a point x with ε ∈ O(h). For more accurate approximations, central differences
can be used, which approximate the derivative by

∂u

∂x
(x) = u(x + h) − u(x − h)

2h
+ ε (6)

at a point x with ε ∈ O(h2) [14]. These methods are also known as Euler’s methods,
which are a special case of the more general family of Runge-Kutta methods, all of
which may be used for discretization.

While linear PDEs and linear ODEs of higher-order can be transformed into systems
of first-order differential equations [1], all of these methods are also applicable to

1Negative sign ommited for simplicity

3

higher-order derivatives by iterative constructions. After adjusting the grid points
accordingly, we get for second-order derivatives

∂2u

∂x2 (x) ≈ ∂

∂x

u(x + h
2) − u(x − h

2)
h

≈ u(x + h) − 2u(x) + u(x − h)
h2

(7)

Notice how for linear PDEs this always results in a linear combination of function
values at neighboring grid points, making it possible to delegate further computations
to linear algebra solvers [20].

We can now apply these approximations to Poisson’s equation (4)

f(x, y) = ∂2u

∂x2 (x, y) + ∂2u

∂y2 (x, y)

≈ u(x + h, y) − 2u(x, y) + u(x − h, y)
h2 + u(x, y + h) − 2u(x, y) + u(x, y − h)

h2

≈ 1
h2 (u(x, y − h) + u(x − h, y) − 4u(x, y) + u(x + h, y) + u(x, y + h))

(8)

As we want to form a system of linear equations, we then discretize the domain that
is the unit square (0, 1) × (0, 1) into a square grid with (M + 1)2 grid points spaced
by h = 1

M
and defined via

xj = jh and yk = kh

fj,k = f(xj, yk)
uj,k = u(xj, yk)

(9)

with j, k ∈ {0, ..., M}. This results in a series of linear equations

fj,k = 1
h2 (ũj+1,k − 2ũj,k + ũj−1,k + ũj,k+1 − 2ũj,k + ũj,k−1) (10)

with two-dimensional indices. This form would be sufficient for the next step. But
to more easily see how this transforms into matrix form, we will reindex the grid
points to a single index l first, such that j = l mod (M + 1) and k = bl/(M + 1)c or
equivalently l = (j mod (M +1))+k(M +1). This can be understood as numbering
the points row-wise instead of by coordinates and will result in

fl = 1
h2 (ũl−(M+1) + ũl−1 − 4ũl + ũl+1 + ũl+(M+1)) (11)

4

With 0 ≤ l < (M + 1)2 this gives us a total of (M + 1)2 linear equations which we
will transform into sparse matrix form:

f0
...

f(M+1)2−1

 = 1
h2

0 · · · 0
... ...
0 · · · 0

0 · · · 0
... ...
0 · · · 0

0 · · · 0
... D

...
0 · · · 0

0 · · · 0
... I

...
0 · · · 0

. . .

0 · · · 0
... I

...
0 · · · 0

. . .
0 · · · 0
... I

...
0 · · · 0

. . .
0 · · · 0
... I

...
0 · · · 0

0 · · · 0
... D

...
0 · · · 0

0 · · · 0
... ...
0 · · · 0

0 · · · 0
... ...
0 · · · 0

ũ0
...

ũ(M+1)2−1

Here I is the (M − 1) × (M − 1) identity matrix and D is the (M − 1) × (M − 1)
matrix

D =

−4 1 0

1
. 1

0 1 −4

(12)

The many zero rows and columns stem from the boundary condition, i.e. uj,k = 0 if
j ∈ {0, M} or k ∈ {0, M}. We can remove those to further compress the indices and
matrix to obtain the form

~f = L~̃u = 1
h2

D I 0

I
.
. I

0 I D

~̃u (13)

where L is a (M − 1)2 × (M − 1)2 matrix. This generalizes to higher dimensions d
such that L will be an N × N matrix where N = (M − 1)d [6].

From here we may take one of two approaches in quantum computing: The first is
to directly apply a quantum linear system solver as discussed in the next section to
solve equation (1) with L derived as above. This is the general approach as most

5

linear PDEs can be transformed into systems of linear equations, but has some
drawbacks in this case. The second is much more specific to Poisson’s equation, but
can take advantage of the specific structure of L. It will be discussed in section 4.3.

4 QLSS
The quantum linear system solver (QLSS) is a general method for solving the classical
problem

A~x = ~b (14)

on quantum computers. The original version is named HHL after the authors
(Harrow, Hassidim and Lloyd) and was published in 2009 [17]. While newer versions
exist that improve on HHL further, such as the state-of-the-art method from 2022
[7], we will focus on the original version for simplicity.

4.1 Problem statement
Most of the methods for solving linear PDEs as formulated in equation (1) naturally
result in systems of linear equations, which can be solved using linear algebra
techniques [14]. The vectors

~f = (f0, ..., fN−1)
~u = (u0, ..., uN−1)

(15)

required in these techniques follow from the necessary discretization at some grid
points x0, ..., xN−1 of the continuous domain of the differential equation (see section 3).

Solving differential equations in a computational context also means extracting
specific properties of the function u under consideration. This property is often the
value of the function at a specific point, but may also require further (quantum)
computation to obtain [8]. A general quantum solver for differential equations would
therefore need to be able to prepare some state |ũ〉, that is close to the desired
solution state |u〉 up to some error ε:

‖|ũ〉 − |u〉‖ ≤ ε (16)

These two requirements let us then restate the problem for quantum algorithms
to solving

L |u〉 = |f〉 (17)

where the states

|f〉 =
N−1∑
j=0

fj

‖f‖
|j〉 and |u〉 =

N−1∑
j=0

uj

‖u‖
|j〉 (18)

are normalized quantum states representing the functions f and u after the discret-
ization. Notice how the qubits necessary for the representations of |f〉 and |u〉 are

6

exponentially smaller than the grid points necessary for classical representations.
The construction of L heavily depends on the chosen method for discretization and
can be performed more efficiently for some problems (see subsection 4.3).

To see how QLSS is able to prepare the target state |ũ〉, we rephrase the original
problem (17) as the matrix inversion problem

|u〉 = L−1 |f〉 = L−1
N−1∑
j=0

βj |j〉 (19)

where βj = fj

‖f‖ . Without loss of generality we assume that L is Hermitian, then
there exists an eigendecomposition of the form

L |j〉 = λj |j〉

⇒ L−1 |j〉 = 1
λj

|j〉
(20)

where λj are the eigenvalues and |j〉 the eigenstates of L. Inserting (20) into (19)
reduces the problem to finding the inverse of the eigenvalues of L:

|u〉 =
N−1∑
j=0

βj

λj

|j〉 (21)

Given the problem stated in this form, we are now able to construct the QLSS
algorithm.

4.2 Algorithm
We assume that |f〉 is prepared and that we have access to L via quantum random
access memory (QRAM) giving us the unitary UL = eiαL. As show in Figure 1, the
algorithm consists of three main steps:

nc

log2 N

Ancilla qubit |0〉 R(θ̃j) 1

Uθj Uθj

†

Clock register |0〉
QPE QPE†

|0〉

Input register |f〉 |ũ〉

UR

Figure 1: Circuit of the QLSS algorithm

7

(0.) Prepare the input register.
Although this may not be trivial, we assume that the input register is prepared
in the state

|f〉 =
N−1∑
j=0

βj |j〉 (22)

as defined above.

1. Apply quantum phase estimation (QPE) to the input and clock register.

nc

log2 N

Clock register |0〉 H⊗nc QFT† ∑N−1
j=0 βj |λj〉

Input register |f〉 UL
2j

nc-times
|j〉

Figure 2: QPE algorithm used in Figure 1

The QPE algorithm (Figure 2) is used to estimate the eigenvalues of L. For
this it utilises the unitary UL = eiαL which in the general case is realized via
the use of queries to quantum random access memory. The application of QPE
results in the state

QPE (|0〉⊗nc ⊗
N−1∑
j=0

βj |j〉) =
N−1∑
j=0

βj |λj〉 ⊗ |j〉 (23)

Here nc ∈ O(log(1/ε)) controls the precision of the resulting eigenvalues.

2. Apply controlled rotations on the ancilla qubit.

a) Calculate θ̃j = sin−1(C/λj) using an implementation of the inverse and
trigonometric function in Uθj

[6]. The result is stored in an intermediate
register the size of which controls the precision of the calculation.

b) Apply a controlled Ry rotation for each calculated angle θ̃j to the ancilla
qubit.

c) Uncompute 2a.

This results in the top wires being in the state

UR (|0〉 ⊗
N−1∑
j=0

βj |λj〉) =
N−1∑
j=0

βj

√√√√1 − C2

λ̃2
j

|0〉 + C

λ̃j

|1〉

 ⊗ |λj〉 (24)

where C is a normalization constant.

3. Apply the inverse QPE to reset the clock register.
This results in the final state

N−1∑
j=0

βj

√√√√1 − C2

λ̃2
j

|0〉 + C

λ̃j

|1〉

 ⊗ |0〉⊗nc ⊗ |j〉 (25)

8

Measuring the ancilla qubit as 1 collapses this state to

C

‖ũ‖

N−1∑
j=0

βj

λ̃j

|j〉 = |ũ〉 (26)

which matches the desired state from equation (21).

The main runtime of this circuit is determined by the complexity of one query to
QRAM and number of those queries in steps 1 and 3. The QRAM query complexity
can in general be estimated as O(polylog(N)). The term N = (M − 1)d is the size
of |ũ〉 and for the purpose of runtime analysis can be assumed to scale in O

(
(1/ε)d

)
.

The query complexity is therefore only linear in d. The number of those queries
depends on the sparsity s (we will assume s ∈ O(1)) and the condition number
κ = N2/d ∈ O(1/ε) of L [5, 6]. Over time the number of queries has reduced as
shown in Table 1 resulting in a state-of-the-art query complexity of O(1/ε log(1/ε)).

Year Reference Number of queries

2008 Harrow, Hassidim and Lloyd [17] O(κ2/ε)

2012 Ambainis [2] O
(
κ((log κ)/ε)3

)
2019 An and Lin [3] O(κ polylog(1/ε))

2019 Lin and Tong [23] O(κ log(κ/ε))

2022 Costa et al. [7] O(κ log(1/ε))

Table 1: QLSS query complexity over time [7] assuming sparsity s ∈ O(1)

For now there seems to appear no curse of dimensionality. However, most classical
PDE problems require a classical representation of the solution, which requires some
readout of |ũ〉. If only a specific property is required for which amplitude amplification
can be employed, then the readout can be realized in Ω(1/ε). Otherwise, if the
full state is needed, then using quantum tomography a factor of N is introduced,
resulting in a readout of O(N/ε) [4, 15, 8] and discarding any advantage gained from
QLSS.

The space complexity as well as comparisons to classical methods will be discussed
further in section 5.

9

4.3 Special case for Poisson’s equation
As proven in [9] it is possible to rewrite A in the d-dimensional case as

L = B ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d times

+ I ⊗ B ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ B (27)

= B ⊕ · · · ⊕ B︸ ︷︷ ︸
d times

(28)

B = D + 2I =

−2 1 0

1
. 1

0 1 −2

(29)

where ⊕ denotes the Kronecker sum2 and ⊗ the Kronecker product. From this
follows that L may be written in terms of matrix exponentials

eiαL = eiαB ⊗ · · · ⊗ eiαB (30)

where α is some abitrary factor [26]. This allows for the use of Hamiltonian simulation
to directly compute the UL required in the QPE step of QLSS [6]. By skipping
QRAM in this manner we will observe a reduction in the total number of qubits
necessary.

5 Summary of costs
To outline the costs of solving Poisson’s equation using quantum algorithms, we will
compare the time and space complexities with common classical methods. Both
depend heavily on the size after discretization N = (M − 1)d ∈ O

(
(1/ε)d

)
which in

turn depends exponentially on the number of dimensions d as well as the chosen
discretization fidelity which is related to the error ε. It is therefore important for
solving methods to minimize the factor of N as much as possible.

Table 2 and Table 3 compare the time and space complexities with three classical
methods. The first represents general but naive methods for solving systems of
linear equations such as Cholesky decomposition. The second and third are the best
known methods for solving Poisson’s equation. While direct methods are typically
more accurate, iterative methods tend to be faster. But both achieve minimal costs
possible for classical methods [9]. It should be noted that in comparison to the
quantum methods, the classical methods are often parallelized on modern computers,
which can drastically improve the stated runtimes [9]. Nevertheless, the costs remain
exponential in d.

Now considering the quantum methods, the general QLSS method is able to solve
PDEs exponentially faster (only linear in d) than classical methods if readout of
the solution is ignored. But for most PDE problems the full solution is required,

2A ⊕ B := A ⊗ Ib + Ia ⊗ B

10

Method Time

O(N3)

O(N log N)

Best iterative (Multigrid) O(N) or* O(N log N)

General QLSS [8] O
(
polylog(N) sN

2
d log

(
1
ε

)
1
ε
N**

)
– for Poisson’s eq. with QRAM O

(
poly(d)polylog

(
1
ε

)
1
ε

1
ε
N**

)
– Special case [6] O

((
d log3

(
1
ε

)
+ log4

(
1
ε

))
1
ε
N**

)

Classical [9]

General
(e.g. Cholesky decomp.)
Best direct
(FFT, Block cyclic reduction)

Quantum

Table 2: Time costs of solving Poisson’s equation in terms of d dimensions, ε error
and N = O

(
ε−d

)
. *with comparable error to direct methods **factor for full

readout

Method Space

O(N2)

O(N)

Best iterative(Multigrid) O(N)

General QLSS (with QRAM) [8] O(N2)*

– with Hamiltonian sim. [6] O
(
d log2

(
1
ε

)
+ log3

(
1
ε

))

Classical [9]

General
(e.g. Cholesky decomp.)
Best direct
(FFT, Block cyclic reduction)

Quantum

Table 3: Space costs of solving Poisson’s equation in terms of d dimensions, ε error
and N = O(ε−d). *for dense matrices, more efficient for sparse matrices

discarding any quantum advantage gained. This holds for all listed quantum methods,
including the special case for Poisson’s equation.

In terms of space complexity, the structure of the problem is crucial. For dense
matrices in the general case, the space complexity of QLSS is O(N2) due to the use
of QRAM, which is worse than the best classical methods. But structures of sparse
matrices can be exploited to reduce the space complexity [8]. As such, the special
case for Poisson’s equation is able to achieve a space complexity that is exponentially
better than classical methods.

6 Current state of research
While we have discussed methods for solving Poisson’s equation using quantum
algorithms, it is important to note that the research still evolves rapidly and also

11

includes broader problems than the ones presented here. This section will give a
brief overview in this regard.

Nonlinear PDEs This paper has only looked at solving linear PDEs with quantum
algorithms. However, many real world problems are more closely modelled by
nonlinear PDEs, so we provide Figure 3 as a brief and non-exhaustive map of current
approaches for solving these equations. Algorithms either represent them as linear
PDEs [20, 19] or use domain specific methods to solve them. Another promising
new approach which also applies to linear PDEs is to use time-marching methods
to utilize Hamiltonian simulations [13, 22]. This is related to the special case for
Poisson’s equation discussed in subsection 4.3.

Linear PDEs

QLSS Hamiltonian simulation Specialized methods

Nonlinear PDEs

Discretization

Example [6]

Time-marching (2023) [13]

Linearization / Representation [20]

Map to
Schrödinger equation [22]

Figure 3: Map for solving nonlinear PDEs with quantum algorithms. Green indicates
the parts covered in this paper.

Time and space costs Large time costs remain a significant challenge in the
discussed algorithms. The quantum speedup often vanishes during the readout phase,
which looses the overall speedup gained over classical algorithms. This issue arises
from the one-to-one translation of classical differential equation problems, which
require solutions to be present classically. To improve on this, future problems might
be restated to require results to be present as quantum states, which could potentially
mitigate this issue. Other promising approaches not based on QLSS as suggested by
Fang, Lin and Tong [13] also show at least polynomial speedup.

In addition to time costs, memory costs for the general QLSS approach can
also be substantial due to QRAM. However, these costs can be more efficient for
problems with special structures, such as the one discussed in this paper or other
sparse problems. For those, the curse of dimensionality (in space) can be broken.
Alternatives to QRAM are also being explored, with Wang, McArdle and Berta [25]
proposing the use of classical data structures and requiring only O(log N) qubits.

High-dimensional PDEs The quantum algorithms show the most potential for
solving high-dimensional PDEs, as their main advantage is to minimize the dimension
dependency. In quantum chemistry for instance, some problems require one dimension
per simulated particle, which can be resource intensive with classical methods [8, 16].

12

The Black-Scholes equation is another example, although more efficient Monte Carlo
based methods exist for this particular equation [11].

Conclusion While there are still significant challenges to overcome, quantum al-
gorithms for solving differential equation problems continue to show potential, par-
ticularly for problems with special structures and high-dimensional PDEs. While
some argue that only polynomial speedup is possible for most practical applications
[24], there is still much ongoing research in the field, with improvements being made
at each step.

13

References
[1] Ravi P Agarwal, Simona Hodis and Donal O’Regan. 500 examples and problems

of applied differential equations. Springer, 2019.
[2] Andris Ambainis. ‘Variable time amplitude amplification and a faster quantum

algorithm for solving systems of linear equations’. In: arXiv preprint arXiv:1010.4458
(2010).

[3] Dong An and Lin Lin. ‘Quantum linear system solver based on time-optimal
adiabatic quantum computing and quantum approximate optimization al-
gorithm’. In: ACM Transactions on Quantum Computing 3.2 (2022), pp. 1–
28.

[4] Anurag Anshu and Srinivasan Arunachalam. ‘A survey on the complexity of
learning quantum states’. In: Nature Reviews Physics 6.1 (2024), pp. 59–69.

[5] Susanne C Brenner. The mathematical theory of finite element methods. Springer,
2008.

[6] Yudong Cao et al. ‘Quantum algorithm and circuit design solving the Poisson
equation’. In: New Journal of Physics 15.1 (2013), p. 013021.

[7] Pedro CS Costa et al. ‘Optimal scaling quantum linear-systems solver via
discrete adiabatic theorem’. In: PRX quantum 3.4 (2022), p. 040303.

[8] Alexander M Dalzell et al. ‘Quantum algorithms: A survey of applications and
end-to-end complexities’. In: arXiv preprint arXiv:2310.03011 (2023).

[9] James W Demmel. Applied numerical linear algebra. SIAM, 1997.
[10] Byakatonda Denis. ‘An overview of numerical and analytical methods for

solving ordinary differential equations’. In: arXiv preprint arXiv:2012.07558
(2020).

[11] Erik Ekedahl, Eric Hansander and Erik Lehto. ‘Dimension reduction for the
black-scholes equation’. In: Department of Information Technology, Uppsala
University (2007).

[12] Lawrence C Evans. Partial differential equations. Vol. 19. American Mathem-
atical Society, 2022.

[13] Di Fang, Lin Lin and Yu Tong. ‘Time-marching based quantum solvers for
time-dependent linear differential equations’. In: Quantum 7 (2023), p. 955.

[14] David Francis Griffiths and Desmond J Higham. Numerical methods for ordin-
ary differential equations: initial value problems. Vol. 5. Springer, 2010.

[15] Jeongwan Haah et al. ‘Sample-optimal tomography of quantum states’. In:
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing.
2016, pp. 913–925.

[16] Jiequn Han, Arnulf Jentzen and Weinan E. ‘Solving high-dimensional partial
differential equations using deep learning’. In: Proceedings of the National
Academy of Sciences 115.34 (2018), pp. 8505–8510.

[17] Aram W Harrow, Avinatan Hassidim and Seth Lloyd. ‘Quantum algorithm for
linear systems of equations’. In: Physical review letters 103.15 (2009), p. 150502.

14

[18] James Higgins. Differential Equations ODE Flow Chart. Apr. 2016. url: https:
//www.pdx.edu/learning-center/sites/learningcenter.web.wdt.pdx.
edu / files / 2020 - 07 / Differential _ Equations _ ODE _ Flow _ Chart . pdf
(visited on 16/07/2024).

[19] Shi Jin and Nana Liu. ‘Quantum algorithms for computing observables of
nonlinear partial differential equations’. In: arXiv preprint arXiv:2202.07834
(2022).

[20] Shi Jin, Nana Liu and Yue Yu. ‘Time complexity analysis of quantum algorithms
via linear representations for nonlinear ordinary and partial differential equa-
tions’. In: Journal of Computational Physics 487 (2023), p. 112149.

[21] Nadav Levi. ‘Numerical integration of ODEs with Automatic differentiation’.
PhD thesis. 2021.

[22] Sarah K Leyton and Tobias J Osborne. ‘A quantum algorithm to solve nonlinear
differential equations’. In: arXiv preprint arXiv:0812.4423 (2008).

[23] Lin Lin and Yu Tong. ‘Optimal polynomial based quantum eigenstate filtering
with application to solving quantum linear systems’. In: Quantum 4 (2020),
p. 361.

[24] Ashley Montanaro and Sam Pallister. ‘Quantum algorithms and the finite
element method’. In: Physical Review A 93.3 (2016), p. 032324.

[25] Samson Wang, Sam McArdle and Mario Berta. ‘Qubit-efficient randomized
quantum algorithms for linear algebra’. In: PRX Quantum 5.2 (Apr. 2024),
p. 020324.

[26] EW Weisstein. Kronecker Sum. From MathworldA Wolfram Web Resource.
2021.

15

https://www.pdx.edu/learning-center/sites/learningcenter.web.wdt.pdx.edu/files/2020-07/Differential_Equations_ODE_Flow_Chart.pdf
https://www.pdx.edu/learning-center/sites/learningcenter.web.wdt.pdx.edu/files/2020-07/Differential_Equations_ODE_Flow_Chart.pdf
https://www.pdx.edu/learning-center/sites/learningcenter.web.wdt.pdx.edu/files/2020-07/Differential_Equations_ODE_Flow_Chart.pdf

	Introduction
	Linear differential equations
	Poisson's equation

	Discretization
	QLSS
	Problem statement
	Algorithm
	Special case for Poisson's equation

	Summary of costs
	Current state of research
	References

